MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsgsum Structured version   Visualization version   GIF version

Theorem prdsgsum 18305
Description: Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
prdsgsum.y 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
prdsgsum.b 𝐵 = (Base‘𝑅)
prdsgsum.z 0 = (0g𝑌)
prdsgsum.i (𝜑𝐼𝑉)
prdsgsum.j (𝜑𝐽𝑊)
prdsgsum.s (𝜑𝑆𝑋)
prdsgsum.r ((𝜑𝑥𝐼) → 𝑅 ∈ CMnd)
prdsgsum.f ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
prdsgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
Assertion
Ref Expression
prdsgsum (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐼   𝑥,𝐽,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem prdsgsum
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 prdsgsum.y . . . 4 𝑌 = (𝑆Xs(𝑥𝐼𝑅))
2 eqid 2621 . . . 4 (Base‘𝑌) = (Base‘𝑌)
3 prdsgsum.s . . . 4 (𝜑𝑆𝑋)
4 prdsgsum.i . . . 4 (𝜑𝐼𝑉)
5 prdsgsum.r . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ CMnd)
6 eqid 2621 . . . . . 6 (𝑥𝐼𝑅) = (𝑥𝐼𝑅)
75, 6fmptd 6346 . . . . 5 (𝜑 → (𝑥𝐼𝑅):𝐼⟶CMnd)
8 ffn 6007 . . . . 5 ((𝑥𝐼𝑅):𝐼⟶CMnd → (𝑥𝐼𝑅) Fn 𝐼)
97, 8syl 17 . . . 4 (𝜑 → (𝑥𝐼𝑅) Fn 𝐼)
10 prdsgsum.z . . . . 5 0 = (0g𝑌)
111, 4, 3, 7prdscmnd 18192 . . . . 5 (𝜑𝑌 ∈ CMnd)
12 prdsgsum.j . . . . 5 (𝜑𝐽𝑊)
13 prdsgsum.f . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
1413anassrs 679 . . . . . . . . 9 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈𝐵)
1514an32s 845 . . . . . . . 8 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈𝐵)
1615ralrimiva 2961 . . . . . . 7 ((𝜑𝑦𝐽) → ∀𝑥𝐼 𝑈𝐵)
175ralrimiva 2961 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼 𝑅 ∈ CMnd)
18 prdsgsum.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
191, 2, 3, 4, 17, 18prdsbasmpt2 16070 . . . . . . . 8 (𝜑 → ((𝑥𝐼𝑈) ∈ (Base‘𝑌) ↔ ∀𝑥𝐼 𝑈𝐵))
2019adantr 481 . . . . . . 7 ((𝜑𝑦𝐽) → ((𝑥𝐼𝑈) ∈ (Base‘𝑌) ↔ ∀𝑥𝐼 𝑈𝐵))
2116, 20mpbird 247 . . . . . 6 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
22 eqid 2621 . . . . . 6 (𝑦𝐽 ↦ (𝑥𝐼𝑈)) = (𝑦𝐽 ↦ (𝑥𝐼𝑈))
2321, 22fmptd 6346 . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽⟶(Base‘𝑌))
24 prdsgsum.w . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
252, 10, 11, 12, 23, 24gsumcl 18244 . . . 4 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) ∈ (Base‘𝑌))
261, 2, 3, 4, 9, 25prdsbasfn 16059 . . 3 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼)
27 nfcv 2761 . . . . 5 𝑥𝑌
28 nfcv 2761 . . . . 5 𝑥 Σg
29 nfcv 2761 . . . . . 6 𝑥𝐽
30 nfmpt1 4712 . . . . . 6 𝑥(𝑥𝐼𝑈)
3129, 30nfmpt 4711 . . . . 5 𝑥(𝑦𝐽 ↦ (𝑥𝐼𝑈))
3227, 28, 31nfov 6636 . . . 4 𝑥(𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))
3332dffn5f 6214 . . 3 ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) Fn 𝐼 ↔ (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
3426, 33sylib 208 . 2 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
35 simpr 477 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑥𝐼)
3635adantr 481 . . . . . . 7 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑥𝐼)
37 eqid 2621 . . . . . . . 8 (𝑥𝐼𝑈) = (𝑥𝐼𝑈)
3837fvmpt2 6253 . . . . . . 7 ((𝑥𝐼𝑈𝐵) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
3936, 14, 38syl2anc 692 . . . . . 6 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → ((𝑥𝐼𝑈)‘𝑥) = 𝑈)
4039mpteq2dva 4709 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥)) = (𝑦𝐽𝑈))
4140oveq2d 6626 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = (𝑅 Σg (𝑦𝐽𝑈)))
4211adantr 481 . . . . 5 ((𝜑𝑥𝐼) → 𝑌 ∈ CMnd)
43 cmnmnd 18136 . . . . . 6 (𝑅 ∈ CMnd → 𝑅 ∈ Mnd)
445, 43syl 17 . . . . 5 ((𝜑𝑥𝐼) → 𝑅 ∈ Mnd)
4512adantr 481 . . . . 5 ((𝜑𝑥𝐼) → 𝐽𝑊)
464adantr 481 . . . . . . 7 ((𝜑𝑥𝐼) → 𝐼𝑉)
473adantr 481 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑆𝑋)
4844, 6fmptd 6346 . . . . . . . 8 (𝜑 → (𝑥𝐼𝑅):𝐼⟶Mnd)
4948adantr 481 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑥𝐼𝑅):𝐼⟶Mnd)
501, 2, 46, 47, 49, 35prdspjmhm 17295 . . . . . 6 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑌 MndHom ((𝑥𝐼𝑅)‘𝑥)))
516fvmpt2 6253 . . . . . . . 8 ((𝑥𝐼𝑅 ∈ CMnd) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
5235, 5, 51syl2anc 692 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝑥𝐼𝑅)‘𝑥) = 𝑅)
5352oveq2d 6626 . . . . . 6 ((𝜑𝑥𝐼) → (𝑌 MndHom ((𝑥𝐼𝑅)‘𝑥)) = (𝑌 MndHom 𝑅))
5450, 53eleqtrd 2700 . . . . 5 ((𝜑𝑥𝐼) → (𝑎 ∈ (Base‘𝑌) ↦ (𝑎𝑥)) ∈ (𝑌 MndHom 𝑅))
5521adantlr 750 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → (𝑥𝐼𝑈) ∈ (Base‘𝑌))
5624adantr 481 . . . . 5 ((𝜑𝑥𝐼) → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
57 fveq1 6152 . . . . 5 (𝑎 = (𝑥𝐼𝑈) → (𝑎𝑥) = ((𝑥𝐼𝑈)‘𝑥))
58 fveq1 6152 . . . . 5 (𝑎 = (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) → (𝑎𝑥) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
592, 10, 42, 44, 45, 54, 55, 56, 57, 58gsummhm2 18267 . . . 4 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽 ↦ ((𝑥𝐼𝑈)‘𝑥))) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
6041, 59eqtr3d 2657 . . 3 ((𝜑𝑥𝐼) → (𝑅 Σg (𝑦𝐽𝑈)) = ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥))
6160mpteq2dva 4709 . 2 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈)))‘𝑥)))
6234, 61eqtr4d 2658 1 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907   class class class wbr 4618  cmpt 4678   Fn wfn 5847  wf 5848  cfv 5852  (class class class)co 6610   finSupp cfsupp 8226  Basecbs 15788  0gc0g 16028   Σg cgsu 16029  Xscprds 16034  Mndcmnd 17222   MndHom cmhm 17261  CMndccmn 18121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-sup 8299  df-oi 8366  df-card 8716  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-fz 12276  df-fzo 12414  df-seq 12749  df-hash 13065  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-plusg 15882  df-mulr 15883  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-hom 15894  df-cco 15895  df-0g 16030  df-gsum 16031  df-prds 16036  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-mhm 17263  df-cntz 17678  df-cmn 18123
This theorem is referenced by:  pwsgsum  18306
  Copyright terms: Public domain W3C validator