MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxmslem1 Structured version   Visualization version   GIF version

Theorem prdsxmslem1 23138
Description: Lemma for prdsms 23141. The distance function of a product structure is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
prdsxms.y 𝑌 = (𝑆Xs𝑅)
prdsxms.s (𝜑𝑆𝑊)
prdsxms.i (𝜑𝐼 ∈ Fin)
prdsxms.d 𝐷 = (dist‘𝑌)
prdsxms.b 𝐵 = (Base‘𝑌)
prdsxms.r (𝜑𝑅:𝐼⟶∞MetSp)
Assertion
Ref Expression
prdsxmslem1 (𝜑𝐷 ∈ (∞Met‘𝐵))

Proof of Theorem prdsxmslem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))
2 eqid 2821 . . 3 (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))) = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
3 eqid 2821 . . 3 (Base‘(𝑅𝑘)) = (Base‘(𝑅𝑘))
4 eqid 2821 . . 3 ((dist‘(𝑅𝑘)) ↾ ((Base‘(𝑅𝑘)) × (Base‘(𝑅𝑘)))) = ((dist‘(𝑅𝑘)) ↾ ((Base‘(𝑅𝑘)) × (Base‘(𝑅𝑘))))
5 eqid 2821 . . 3 (dist‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))) = (dist‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
6 prdsxms.s . . 3 (𝜑𝑆𝑊)
7 prdsxms.i . . 3 (𝜑𝐼 ∈ Fin)
8 prdsxms.r . . . 4 (𝜑𝑅:𝐼⟶∞MetSp)
98ffvelrnda 6851 . . 3 ((𝜑𝑘𝐼) → (𝑅𝑘) ∈ ∞MetSp)
103, 4xmsxmet 23066 . . . 4 ((𝑅𝑘) ∈ ∞MetSp → ((dist‘(𝑅𝑘)) ↾ ((Base‘(𝑅𝑘)) × (Base‘(𝑅𝑘)))) ∈ (∞Met‘(Base‘(𝑅𝑘))))
119, 10syl 17 . . 3 ((𝜑𝑘𝐼) → ((dist‘(𝑅𝑘)) ↾ ((Base‘(𝑅𝑘)) × (Base‘(𝑅𝑘)))) ∈ (∞Met‘(Base‘(𝑅𝑘))))
121, 2, 3, 4, 5, 6, 7, 9, 11prdsxmet 22979 . 2 (𝜑 → (dist‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))) ∈ (∞Met‘(Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))))
13 prdsxms.d . . 3 𝐷 = (dist‘𝑌)
14 prdsxms.y . . . . 5 𝑌 = (𝑆Xs𝑅)
158feqmptd 6733 . . . . . 6 (𝜑𝑅 = (𝑘𝐼 ↦ (𝑅𝑘)))
1615oveq2d 7172 . . . . 5 (𝜑 → (𝑆Xs𝑅) = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
1714, 16syl5eq 2868 . . . 4 (𝜑𝑌 = (𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))
1817fveq2d 6674 . . 3 (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
1913, 18syl5eq 2868 . 2 (𝜑𝐷 = (dist‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
20 prdsxms.b . . . 4 𝐵 = (Base‘𝑌)
2117fveq2d 6674 . . . 4 (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
2220, 21syl5eq 2868 . . 3 (𝜑𝐵 = (Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘)))))
2322fveq2d 6674 . 2 (𝜑 → (∞Met‘𝐵) = (∞Met‘(Base‘(𝑆Xs(𝑘𝐼 ↦ (𝑅𝑘))))))
2412, 19, 233eltr4d 2928 1 (𝜑𝐷 ∈ (∞Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cmpt 5146   × cxp 5553  cres 5557  wf 6351  cfv 6355  (class class class)co 7156  Fincfn 8509  Basecbs 16483  distcds 16574  Xscprds 16719  ∞Metcxmet 20530  ∞MetSpcxms 22927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-icc 12746  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-topgen 16717  df-prds 16721  df-psmet 20537  df-xmet 20538  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-xms 22930
This theorem is referenced by:  prdsxmslem2  23139  prdsxms  23140
  Copyright terms: Public domain W3C validator