Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssub Structured version   Visualization version   GIF version

Theorem pwssub 17750
 Description: Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y 𝑌 = (𝑅s 𝐼)
pwsinvg.b 𝐵 = (Base‘𝑌)
pwssub.m 𝑀 = (-g𝑅)
pwssub.n = (-g𝑌)
Assertion
Ref Expression
pwssub (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹𝑓 𝑀𝐺))

Proof of Theorem pwssub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 809 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐼𝑉)
2 pwsgrp.y . . . . . 6 𝑌 = (𝑅s 𝐼)
3 eqid 2760 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
4 pwsinvg.b . . . . . 6 𝐵 = (Base‘𝑌)
5 simpll 807 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝑅 ∈ Grp)
6 simprl 811 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹𝐵)
72, 3, 4, 5, 1, 6pwselbas 16371 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹:𝐼⟶(Base‘𝑅))
87ffvelrnda 6523 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ (Base‘𝑅))
9 fvexd 6365 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → ((invg𝑅)‘(𝐺𝑥)) ∈ V)
107feqmptd 6412 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
11 simprr 813 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺𝐵)
12 eqid 2760 . . . . . . 7 (invg𝑅) = (invg𝑅)
13 eqid 2760 . . . . . . 7 (invg𝑌) = (invg𝑌)
142, 4, 12, 13pwsinvg 17749 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝐺𝐵) → ((invg𝑌)‘𝐺) = ((invg𝑅) ∘ 𝐺))
155, 1, 11, 14syl3anc 1477 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) = ((invg𝑅) ∘ 𝐺))
162, 3, 4, 5, 1, 11pwselbas 16371 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺:𝐼⟶(Base‘𝑅))
1716ffvelrnda 6523 . . . . . 6 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ (Base‘𝑅))
1816feqmptd 6412 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
193, 12grpinvf 17687 . . . . . . . 8 (𝑅 ∈ Grp → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
2019ad2antrr 764 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
2120feqmptd 6412 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (invg𝑅) = (𝑦 ∈ (Base‘𝑅) ↦ ((invg𝑅)‘𝑦)))
22 fveq2 6353 . . . . . 6 (𝑦 = (𝐺𝑥) → ((invg𝑅)‘𝑦) = ((invg𝑅)‘(𝐺𝑥)))
2317, 18, 21, 22fmptco 6560 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑅) ∘ 𝐺) = (𝑥𝐼 ↦ ((invg𝑅)‘(𝐺𝑥))))
2415, 23eqtrd 2794 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) = (𝑥𝐼 ↦ ((invg𝑅)‘(𝐺𝑥))))
251, 8, 9, 10, 24offval2 7080 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹𝑓 (+g𝑅)((invg𝑌)‘𝐺)) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥)))))
262pwsgrp 17748 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐼𝑉) → 𝑌 ∈ Grp)
2726adantr 472 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝑌 ∈ Grp)
284, 13grpinvcl 17688 . . . . 5 ((𝑌 ∈ Grp ∧ 𝐺𝐵) → ((invg𝑌)‘𝐺) ∈ 𝐵)
2927, 11, 28syl2anc 696 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) ∈ 𝐵)
30 eqid 2760 . . . 4 (+g𝑅) = (+g𝑅)
31 eqid 2760 . . . 4 (+g𝑌) = (+g𝑌)
322, 4, 5, 1, 6, 29, 30, 31pwsplusgval 16372 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹(+g𝑌)((invg𝑌)‘𝐺)) = (𝐹𝑓 (+g𝑅)((invg𝑌)‘𝐺)))
33 pwssub.m . . . . . 6 𝑀 = (-g𝑅)
343, 30, 12, 33grpsubval 17686 . . . . 5 (((𝐹𝑥) ∈ (Base‘𝑅) ∧ (𝐺𝑥) ∈ (Base‘𝑅)) → ((𝐹𝑥)𝑀(𝐺𝑥)) = ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥))))
358, 17, 34syl2anc 696 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → ((𝐹𝑥)𝑀(𝐺𝑥)) = ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥))))
3635mpteq2dva 4896 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥)))))
3725, 32, 363eqtr4d 2804 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹(+g𝑌)((invg𝑌)‘𝐺)) = (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))))
38 pwssub.n . . . 4 = (-g𝑌)
394, 31, 13, 38grpsubval 17686 . . 3 ((𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐹(+g𝑌)((invg𝑌)‘𝐺)))
4039adantl 473 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹(+g𝑌)((invg𝑌)‘𝐺)))
411, 8, 17, 10, 18offval2 7080 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹𝑓 𝑀𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))))
4237, 40, 413eqtr4d 2804 1 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹𝑓 𝑀𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  Vcvv 3340   ↦ cmpt 4881   ∘ ccom 5270  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814   ∘𝑓 cof 7061  Basecbs 16079  +gcplusg 16163   ↑s cpws 16329  Grpcgrp 17643  invgcminusg 17644  -gcsg 17645 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-plusg 16176  df-mulr 16177  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-hom 16188  df-cco 16189  df-0g 16324  df-prds 16330  df-pws 16332  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-sbg 17648 This theorem is referenced by:  evl1subd  19928  frlmsubgval  20330
 Copyright terms: Public domain W3C validator