MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssub Structured version   Visualization version   GIF version

Theorem pwssub 17301
Description: Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y 𝑌 = (𝑅s 𝐼)
pwsinvg.b 𝐵 = (Base‘𝑌)
pwssub.m 𝑀 = (-g𝑅)
pwssub.n = (-g𝑌)
Assertion
Ref Expression
pwssub (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹𝑓 𝑀𝐺))

Proof of Theorem pwssub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 788 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐼𝑉)
2 pwsgrp.y . . . . . 6 𝑌 = (𝑅s 𝐼)
3 eqid 2610 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
4 pwsinvg.b . . . . . 6 𝐵 = (Base‘𝑌)
5 simpll 786 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝑅 ∈ Grp)
6 simprl 790 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹𝐵)
72, 3, 4, 5, 1, 6pwselbas 15921 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹:𝐼⟶(Base‘𝑅))
87ffvelrnda 6252 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ (Base‘𝑅))
9 fvex 6098 . . . . 5 ((invg𝑅)‘(𝐺𝑥)) ∈ V
109a1i 11 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → ((invg𝑅)‘(𝐺𝑥)) ∈ V)
117feqmptd 6144 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
12 simprr 792 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺𝐵)
13 eqid 2610 . . . . . . 7 (invg𝑅) = (invg𝑅)
14 eqid 2610 . . . . . . 7 (invg𝑌) = (invg𝑌)
152, 4, 13, 14pwsinvg 17300 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝐺𝐵) → ((invg𝑌)‘𝐺) = ((invg𝑅) ∘ 𝐺))
165, 1, 12, 15syl3anc 1318 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) = ((invg𝑅) ∘ 𝐺))
172, 3, 4, 5, 1, 12pwselbas 15921 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺:𝐼⟶(Base‘𝑅))
1817ffvelrnda 6252 . . . . . 6 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ (Base‘𝑅))
1917feqmptd 6144 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
203, 13grpinvf 17238 . . . . . . . 8 (𝑅 ∈ Grp → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
2120ad2antrr 758 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
2221feqmptd 6144 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (invg𝑅) = (𝑦 ∈ (Base‘𝑅) ↦ ((invg𝑅)‘𝑦)))
23 fveq2 6088 . . . . . 6 (𝑦 = (𝐺𝑥) → ((invg𝑅)‘𝑦) = ((invg𝑅)‘(𝐺𝑥)))
2418, 19, 22, 23fmptco 6288 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑅) ∘ 𝐺) = (𝑥𝐼 ↦ ((invg𝑅)‘(𝐺𝑥))))
2516, 24eqtrd 2644 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) = (𝑥𝐼 ↦ ((invg𝑅)‘(𝐺𝑥))))
261, 8, 10, 11, 25offval2 6790 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹𝑓 (+g𝑅)((invg𝑌)‘𝐺)) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥)))))
272pwsgrp 17299 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐼𝑉) → 𝑌 ∈ Grp)
2827adantr 480 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝑌 ∈ Grp)
294, 14grpinvcl 17239 . . . . 5 ((𝑌 ∈ Grp ∧ 𝐺𝐵) → ((invg𝑌)‘𝐺) ∈ 𝐵)
3028, 12, 29syl2anc 691 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) ∈ 𝐵)
31 eqid 2610 . . . 4 (+g𝑅) = (+g𝑅)
32 eqid 2610 . . . 4 (+g𝑌) = (+g𝑌)
332, 4, 5, 1, 6, 30, 31, 32pwsplusgval 15922 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹(+g𝑌)((invg𝑌)‘𝐺)) = (𝐹𝑓 (+g𝑅)((invg𝑌)‘𝐺)))
34 pwssub.m . . . . . 6 𝑀 = (-g𝑅)
353, 31, 13, 34grpsubval 17237 . . . . 5 (((𝐹𝑥) ∈ (Base‘𝑅) ∧ (𝐺𝑥) ∈ (Base‘𝑅)) → ((𝐹𝑥)𝑀(𝐺𝑥)) = ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥))))
368, 18, 35syl2anc 691 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → ((𝐹𝑥)𝑀(𝐺𝑥)) = ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥))))
3736mpteq2dva 4667 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥)))))
3826, 33, 373eqtr4d 2654 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹(+g𝑌)((invg𝑌)‘𝐺)) = (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))))
39 pwssub.n . . . 4 = (-g𝑌)
404, 32, 14, 39grpsubval 17237 . . 3 ((𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐹(+g𝑌)((invg𝑌)‘𝐺)))
4140adantl 481 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹(+g𝑌)((invg𝑌)‘𝐺)))
421, 8, 18, 11, 19offval2 6790 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹𝑓 𝑀𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))))
4338, 41, 423eqtr4d 2654 1 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹𝑓 𝑀𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cmpt 4638  ccom 5032  wf 5786  cfv 5790  (class class class)co 6527  𝑓 cof 6771  Basecbs 15644  +gcplusg 15717  s cpws 15879  Grpcgrp 17194  invgcminusg 17195  -gcsg 17196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-map 7724  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-fz 12156  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-plusg 15730  df-mulr 15731  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-hom 15742  df-cco 15743  df-0g 15874  df-prds 15880  df-pws 15882  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-grp 17197  df-minusg 17198  df-sbg 17199
This theorem is referenced by:  evl1subd  19476  frlmsubgval  19875
  Copyright terms: Public domain W3C validator