MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsval Structured version   Visualization version   GIF version

Theorem pwsval 16759
Description: Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsval.y 𝑌 = (𝑅s 𝐼)
pwsval.f 𝐹 = (Scalar‘𝑅)
Assertion
Ref Expression
pwsval ((𝑅𝑉𝐼𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅})))

Proof of Theorem pwsval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsval.y . 2 𝑌 = (𝑅s 𝐼)
2 elex 3512 . . 3 (𝑅𝑉𝑅 ∈ V)
3 elex 3512 . . 3 (𝐼𝑊𝐼 ∈ V)
4 simpl 485 . . . . . . 7 ((𝑟 = 𝑅𝑖 = 𝐼) → 𝑟 = 𝑅)
54fveq2d 6674 . . . . . 6 ((𝑟 = 𝑅𝑖 = 𝐼) → (Scalar‘𝑟) = (Scalar‘𝑅))
6 pwsval.f . . . . . 6 𝐹 = (Scalar‘𝑅)
75, 6syl6eqr 2874 . . . . 5 ((𝑟 = 𝑅𝑖 = 𝐼) → (Scalar‘𝑟) = 𝐹)
8 id 22 . . . . . 6 (𝑖 = 𝐼𝑖 = 𝐼)
9 sneq 4577 . . . . . 6 (𝑟 = 𝑅 → {𝑟} = {𝑅})
10 xpeq12 5580 . . . . . 6 ((𝑖 = 𝐼 ∧ {𝑟} = {𝑅}) → (𝑖 × {𝑟}) = (𝐼 × {𝑅}))
118, 9, 10syl2anr 598 . . . . 5 ((𝑟 = 𝑅𝑖 = 𝐼) → (𝑖 × {𝑟}) = (𝐼 × {𝑅}))
127, 11oveq12d 7174 . . . 4 ((𝑟 = 𝑅𝑖 = 𝐼) → ((Scalar‘𝑟)Xs(𝑖 × {𝑟})) = (𝐹Xs(𝐼 × {𝑅})))
13 df-pws 16723 . . . 4 s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟})))
14 ovex 7189 . . . 4 (𝐹Xs(𝐼 × {𝑅})) ∈ V
1512, 13, 14ovmpoa 7305 . . 3 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅s 𝐼) = (𝐹Xs(𝐼 × {𝑅})))
162, 3, 15syl2an 597 . 2 ((𝑅𝑉𝐼𝑊) → (𝑅s 𝐼) = (𝐹Xs(𝐼 × {𝑅})))
171, 16syl5eq 2868 1 ((𝑅𝑉𝐼𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  {csn 4567   × cxp 5553  cfv 6355  (class class class)co 7156  Scalarcsca 16568  Xscprds 16719  s cpws 16720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-pws 16723
This theorem is referenced by:  pwsbas  16760  pwsplusgval  16763  pwsmulrval  16764  pwsle  16765  pwsvscafval  16767  pwssca  16769  pwsmnd  17946  pws0g  17947  pwspjmhm  17994  pwsgrp  18211  pwsinvg  18212  pwscmn  18983  pwsabl  18984  pwsgsum  19102  pwsring  19365  pws1  19366  pwscrng  19367  pwsmgp  19368  pwslmod  19742  frlmpws  20894  frlmlss  20895  frlmpwsfi  20896  frlmbas  20899  frlmip  20922  pwstps  22238  resspwsds  22982  pwsxms  23142  pwsms  23143  rrxprds  23992  cnpwstotbnd  35090  repwsmet  35127  rrnequiv  35128
  Copyright terms: Public domain W3C validator