MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsbas Structured version   Visualization version   GIF version

Theorem pwsbas 16760
Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsbas.y 𝑌 = (𝑅s 𝐼)
pwsbas.f 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
pwsbas ((𝑅𝑉𝐼𝑊) → (𝐵m 𝐼) = (Base‘𝑌))

Proof of Theorem pwsbas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwsbas.y . . . 4 𝑌 = (𝑅s 𝐼)
2 eqid 2821 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
31, 2pwsval 16759 . . 3 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
43fveq2d 6674 . 2 ((𝑅𝑉𝐼𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
5 eqid 2821 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
6 fvexd 6685 . . . 4 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑅) ∈ V)
7 simpr 487 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝐼𝑊)
8 snex 5332 . . . . 5 {𝑅} ∈ V
9 xpexg 7473 . . . . 5 ((𝐼𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V)
107, 8, 9sylancl 588 . . . 4 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑅}) ∈ V)
11 eqid 2821 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
12 snnzg 4710 . . . . . 6 (𝑅𝑉 → {𝑅} ≠ ∅)
1312adantr 483 . . . . 5 ((𝑅𝑉𝐼𝑊) → {𝑅} ≠ ∅)
14 dmxp 5799 . . . . 5 ({𝑅} ≠ ∅ → dom (𝐼 × {𝑅}) = 𝐼)
1513, 14syl 17 . . . 4 ((𝑅𝑉𝐼𝑊) → dom (𝐼 × {𝑅}) = 𝐼)
165, 6, 10, 11, 15prdsbas 16730 . . 3 ((𝑅𝑉𝐼𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)))
17 fvconst2g 6964 . . . . . . 7 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
1817fveq2d 6674 . . . . . 6 ((𝑅𝑉𝑥𝐼) → (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
1918ralrimiva 3182 . . . . 5 (𝑅𝑉 → ∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
2019adantr 483 . . . 4 ((𝑅𝑉𝐼𝑊) → ∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
21 ixpeq2 8475 . . . 4 (∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅) → X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥𝐼 (Base‘𝑅))
2220, 21syl 17 . . 3 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥𝐼 (Base‘𝑅))
2316, 22eqtrd 2856 . 2 ((𝑅𝑉𝐼𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥𝐼 (Base‘𝑅))
24 fvex 6683 . . . 4 (Base‘𝑅) ∈ V
25 ixpconstg 8470 . . . 4 ((𝐼𝑊 ∧ (Base‘𝑅) ∈ V) → X𝑥𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑m 𝐼))
267, 24, 25sylancl 588 . . 3 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑m 𝐼))
27 pwsbas.f . . . 4 𝐵 = (Base‘𝑅)
2827oveq1i 7166 . . 3 (𝐵m 𝐼) = ((Base‘𝑅) ↑m 𝐼)
2926, 28syl6eqr 2874 . 2 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘𝑅) = (𝐵m 𝐼))
304, 23, 293eqtrrd 2861 1 ((𝑅𝑉𝐼𝑊) → (𝐵m 𝐼) = (Base‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494  c0 4291  {csn 4567   × cxp 5553  dom cdm 5555  cfv 6355  (class class class)co 7156  m cmap 8406  Xcixp 8461  Basecbs 16483  Scalarcsca 16568  Xscprds 16719  s cpws 16720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-prds 16721  df-pws 16723
This theorem is referenced by:  pwselbasb  16761  pwssnf1o  16771  pwsdiagmhm  17995  pwsco1rhm  19490  pwsco2rhm  19491  evls1val  20483  evls1rhmlem  20484  evl1val  20492  frlmbas  20899  frlmsubgval  20909  repwsmet  35127  rrnequiv  35128  pwslnmlem0  39740
  Copyright terms: Public domain W3C validator