Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  repwsmet Structured version   Visualization version   GIF version

Theorem repwsmet 33265
Description: The supremum metric on ℝ↑𝐼 is a metric. (Contributed by Jeff Madsen, 15-Sep-2015.)
Hypotheses
Ref Expression
rrnequiv.y 𝑌 = ((ℂflds ℝ) ↑s 𝐼)
rrnequiv.d 𝐷 = (dist‘𝑌)
rrnequiv.1 𝑋 = (ℝ ↑𝑚 𝐼)
Assertion
Ref Expression
repwsmet (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋))

Proof of Theorem repwsmet
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fconstmpt 5123 . . . 4 (𝐼 × {(ℂflds ℝ)}) = (𝑘𝐼 ↦ (ℂflds ℝ))
21oveq2i 6615 . . 3 ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})) = ((Scalar‘ℂfld)Xs(𝑘𝐼 ↦ (ℂflds ℝ)))
3 eqid 2621 . . 3 (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
4 ax-resscn 9937 . . . 4 ℝ ⊆ ℂ
5 eqid 2621 . . . . 5 (ℂflds ℝ) = (ℂflds ℝ)
6 cnfldbas 19669 . . . . 5 ℂ = (Base‘ℂfld)
75, 6ressbas2 15852 . . . 4 (ℝ ⊆ ℂ → ℝ = (Base‘(ℂflds ℝ)))
84, 7ax-mp 5 . . 3 ℝ = (Base‘(ℂflds ℝ))
9 reex 9971 . . . . 5 ℝ ∈ V
10 cnfldds 19675 . . . . . 6 (abs ∘ − ) = (dist‘ℂfld)
115, 10ressds 15994 . . . . 5 (ℝ ∈ V → (abs ∘ − ) = (dist‘(ℂflds ℝ)))
129, 11ax-mp 5 . . . 4 (abs ∘ − ) = (dist‘(ℂflds ℝ))
1312reseq1i 5352 . . 3 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘(ℂflds ℝ)) ↾ (ℝ × ℝ))
14 eqid 2621 . . 3 (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
15 fvex 6158 . . . 4 (Scalar‘ℂfld) ∈ V
1615a1i 11 . . 3 (𝐼 ∈ Fin → (Scalar‘ℂfld) ∈ V)
17 id 22 . . 3 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
18 ovex 6632 . . . 4 (ℂflds ℝ) ∈ V
1918a1i 11 . . 3 ((𝐼 ∈ Fin ∧ 𝑘𝐼) → (ℂflds ℝ) ∈ V)
20 eqid 2621 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
2120remet 22501 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
2221a1i 11 . . 3 ((𝐼 ∈ Fin ∧ 𝑘𝐼) → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ))
232, 3, 8, 13, 14, 16, 17, 19, 22prdsmet 22085 . 2 (𝐼 ∈ Fin → (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) ∈ (Met‘(Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))))
24 rrnequiv.d . . 3 𝐷 = (dist‘𝑌)
25 rrnequiv.y . . . . . 6 𝑌 = ((ℂflds ℝ) ↑s 𝐼)
26 eqid 2621 . . . . . . . 8 (Scalar‘ℂfld) = (Scalar‘ℂfld)
275, 26resssca 15952 . . . . . . 7 (ℝ ∈ V → (Scalar‘ℂfld) = (Scalar‘(ℂflds ℝ)))
289, 27ax-mp 5 . . . . . 6 (Scalar‘ℂfld) = (Scalar‘(ℂflds ℝ))
2925, 28pwsval 16067 . . . . 5 (((ℂflds ℝ) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
3018, 29mpan 705 . . . 4 (𝐼 ∈ Fin → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
3130fveq2d 6152 . . 3 (𝐼 ∈ Fin → (dist‘𝑌) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3224, 31syl5eq 2667 . 2 (𝐼 ∈ Fin → 𝐷 = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
33 rrnequiv.1 . . . 4 𝑋 = (ℝ ↑𝑚 𝐼)
3425, 8pwsbas 16068 . . . . . 6 (((ℂflds ℝ) ∈ V ∧ 𝐼 ∈ Fin) → (ℝ ↑𝑚 𝐼) = (Base‘𝑌))
3518, 34mpan 705 . . . . 5 (𝐼 ∈ Fin → (ℝ ↑𝑚 𝐼) = (Base‘𝑌))
3630fveq2d 6152 . . . . 5 (𝐼 ∈ Fin → (Base‘𝑌) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3735, 36eqtrd 2655 . . . 4 (𝐼 ∈ Fin → (ℝ ↑𝑚 𝐼) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3833, 37syl5eq 2667 . . 3 (𝐼 ∈ Fin → 𝑋 = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3938fveq2d 6152 . 2 (𝐼 ∈ Fin → (Met‘𝑋) = (Met‘(Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))))
4023, 32, 393eltr4d 2713 1 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  wss 3555  {csn 4148  cmpt 4673   × cxp 5072  cres 5076  ccom 5078  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  Fincfn 7899  cc 9878  cr 9879  cmin 10210  abscabs 13908  Basecbs 15781  s cress 15782  Scalarcsca 15865  distcds 15871  Xscprds 16027  s cpws 16028  Metcme 19651  fldccnfld 19665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12124  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-prds 16029  df-pws 16031  df-xmet 19658  df-met 19659  df-cnfld 19666
This theorem is referenced by:  rrnequiv  33266  rrntotbnd  33267
  Copyright terms: Public domain W3C validator