MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswrevw Structured version   Visualization version   GIF version

Theorem repswrevw 14149
Description: The reverse of a "repeated symbol word". (Contributed by AV, 6-Nov-2018.)
Assertion
Ref Expression
repswrevw ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑆 repeatS 𝑁))

Proof of Theorem repswrevw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repswlen 14138 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
21oveq2d 7172 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0) → (0..^(♯‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
32mpteq1d 5155 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
4 simpll 765 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆𝑉)
5 simplr 767 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
61adantr 483 . . . . . . . 8 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁)
76oveq1d 7171 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((♯‘(𝑆 repeatS 𝑁)) − 1) = (𝑁 − 1))
87oveq1d 7171 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) = ((𝑁 − 1) − 𝑥))
9 ubmelm1fzo 13134 . . . . . . . 8 (𝑥 ∈ (0..^𝑁) → ((𝑁𝑥) − 1) ∈ (0..^𝑁))
10 elfzoelz 13039 . . . . . . . . 9 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
11 nn0cn 11908 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1211ad2antll 727 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
13 zcn 11987 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1413adantr 483 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 𝑥 ∈ ℂ)
15 1cnd 10636 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 1 ∈ ℂ)
1612, 14, 15sub32d 11029 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → ((𝑁𝑥) − 1) = ((𝑁 − 1) − 𝑥))
1716eleq1d 2897 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) ↔ ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
1817biimpd 231 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
1918ex 415 . . . . . . . . 9 (𝑥 ∈ ℤ → ((𝑆𝑉𝑁 ∈ ℕ0) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))))
2010, 19syl 17 . . . . . . . 8 (𝑥 ∈ (0..^𝑁) → ((𝑆𝑉𝑁 ∈ ℕ0) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))))
219, 20mpid 44 . . . . . . 7 (𝑥 ∈ (0..^𝑁) → ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
2221impcom 410 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))
238, 22eqeltrd 2913 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) ∈ (0..^𝑁))
24 repswsymb 14136 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0 ∧ (((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)) = 𝑆)
254, 5, 23, 24syl3anc 1367 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)) = 𝑆)
2625mpteq2dva 5161 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
273, 26eqtrd 2856 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
28 ovex 7189 . . 3 (𝑆 repeatS 𝑁) ∈ V
29 revval 14122 . . 3 ((𝑆 repeatS 𝑁) ∈ V → (reverse‘(𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
3028, 29mp1i 13 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^(♯‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((♯‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
31 reps 14132 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
3227, 30, 313eqtr4d 2866 1 ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑆 repeatS 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cmpt 5146  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537  1c1 10538  cmin 10870  0cn0 11898  cz 11982  ..^cfzo 13034  chash 13691  reversecreverse 14120   repeatS creps 14130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-reverse 14121  df-reps 14131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator