MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswrevw Structured version   Visualization version   GIF version

Theorem repswrevw 13579
Description: The reverse of a "repeated symbol word". (Contributed by AV, 6-Nov-2018.)
Assertion
Ref Expression
repswrevw ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑆 repeatS 𝑁))

Proof of Theorem repswrevw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 repswlen 13569 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0) → (#‘(𝑆 repeatS 𝑁)) = 𝑁)
21oveq2d 6706 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0) → (0..^(#‘(𝑆 repeatS 𝑁))) = (0..^𝑁))
32mpteq1d 4771 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^(#‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
4 simpll 805 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑆𝑉)
5 simplr 807 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
61adantr 480 . . . . . . . 8 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (#‘(𝑆 repeatS 𝑁)) = 𝑁)
76oveq1d 6705 . . . . . . 7 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((#‘(𝑆 repeatS 𝑁)) − 1) = (𝑁 − 1))
87oveq1d 6705 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) = ((𝑁 − 1) − 𝑥))
9 ubmelm1fzo 12604 . . . . . . . 8 (𝑥 ∈ (0..^𝑁) → ((𝑁𝑥) − 1) ∈ (0..^𝑁))
10 elfzoelz 12509 . . . . . . . . 9 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
11 nn0cn 11340 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1211ad2antll 765 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
13 zcn 11420 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1413adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 𝑥 ∈ ℂ)
15 1cnd 10094 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → 1 ∈ ℂ)
1612, 14, 15sub32d 10462 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → ((𝑁𝑥) − 1) = ((𝑁 − 1) − 𝑥))
1716eleq1d 2715 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) ↔ ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
1817biimpd 219 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ (𝑆𝑉𝑁 ∈ ℕ0)) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
1918ex 449 . . . . . . . . 9 (𝑥 ∈ ℤ → ((𝑆𝑉𝑁 ∈ ℕ0) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))))
2010, 19syl 17 . . . . . . . 8 (𝑥 ∈ (0..^𝑁) → ((𝑆𝑉𝑁 ∈ ℕ0) → (((𝑁𝑥) − 1) ∈ (0..^𝑁) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))))
219, 20mpid 44 . . . . . . 7 (𝑥 ∈ (0..^𝑁) → ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁)))
2221impcom 445 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑁 − 1) − 𝑥) ∈ (0..^𝑁))
238, 22eqeltrd 2730 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → (((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) ∈ (0..^𝑁))
24 repswsymb 13567 . . . . 5 ((𝑆𝑉𝑁 ∈ ℕ0 ∧ (((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥) ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)) = 𝑆)
254, 5, 23, 24syl3anc 1366 . . . 4 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥)) = 𝑆)
2625mpteq2dva 4777 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^𝑁) ↦ ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
273, 26eqtrd 2685 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑥 ∈ (0..^(#‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
28 ovex 6718 . . 3 (𝑆 repeatS 𝑁) ∈ V
29 revval 13555 . . 3 ((𝑆 repeatS 𝑁) ∈ V → (reverse‘(𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^(#‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
3028, 29mp1i 13 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑥 ∈ (0..^(#‘(𝑆 repeatS 𝑁))) ↦ ((𝑆 repeatS 𝑁)‘(((#‘(𝑆 repeatS 𝑁)) − 1) − 𝑥))))
31 reps 13563 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆))
3227, 30, 313eqtr4d 2695 1 ((𝑆𝑉𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑆 repeatS 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  cmpt 4762  cfv 5926  (class class class)co 6690  cc 9972  0cc0 9974  1c1 9975  cmin 10304  0cn0 11330  cz 11415  ..^cfzo 12504  #chash 13157  reversecreverse 13329   repeatS creps 13330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-reverse 13337  df-reps 13338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator