MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringmneg1 Structured version   Visualization version   GIF version

Theorem ringmneg1 18368
Description: Negation of a product in a ring. (mulneg1 10318 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringneglmul.b 𝐵 = (Base‘𝑅)
ringneglmul.t · = (.r𝑅)
ringneglmul.n 𝑁 = (invg𝑅)
ringneglmul.r (𝜑𝑅 ∈ Ring)
ringneglmul.x (𝜑𝑋𝐵)
ringneglmul.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ringmneg1 (𝜑 → ((𝑁𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌)))

Proof of Theorem ringmneg1
StepHypRef Expression
1 ringneglmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 ringgrp 18324 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ Grp)
4 ringneglmul.b . . . . . 6 𝐵 = (Base‘𝑅)
5 eqid 2610 . . . . . 6 (1r𝑅) = (1r𝑅)
64, 5ringidcl 18340 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
71, 6syl 17 . . . 4 (𝜑 → (1r𝑅) ∈ 𝐵)
8 ringneglmul.n . . . . 5 𝑁 = (invg𝑅)
94, 8grpinvcl 17239 . . . 4 ((𝑅 ∈ Grp ∧ (1r𝑅) ∈ 𝐵) → (𝑁‘(1r𝑅)) ∈ 𝐵)
103, 7, 9syl2anc 691 . . 3 (𝜑 → (𝑁‘(1r𝑅)) ∈ 𝐵)
11 ringneglmul.x . . 3 (𝜑𝑋𝐵)
12 ringneglmul.y . . 3 (𝜑𝑌𝐵)
13 ringneglmul.t . . . 4 · = (.r𝑅)
144, 13ringass 18336 . . 3 ((𝑅 ∈ Ring ∧ ((𝑁‘(1r𝑅)) ∈ 𝐵𝑋𝐵𝑌𝐵)) → (((𝑁‘(1r𝑅)) · 𝑋) · 𝑌) = ((𝑁‘(1r𝑅)) · (𝑋 · 𝑌)))
151, 10, 11, 12, 14syl13anc 1320 . 2 (𝜑 → (((𝑁‘(1r𝑅)) · 𝑋) · 𝑌) = ((𝑁‘(1r𝑅)) · (𝑋 · 𝑌)))
164, 13, 5, 8, 1, 11ringnegl 18366 . . 3 (𝜑 → ((𝑁‘(1r𝑅)) · 𝑋) = (𝑁𝑋))
1716oveq1d 6542 . 2 (𝜑 → (((𝑁‘(1r𝑅)) · 𝑋) · 𝑌) = ((𝑁𝑋) · 𝑌))
184, 13ringcl 18333 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
191, 11, 12, 18syl3anc 1318 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
204, 13, 5, 8, 1, 19ringnegl 18366 . 2 (𝜑 → ((𝑁‘(1r𝑅)) · (𝑋 · 𝑌)) = (𝑁‘(𝑋 · 𝑌)))
2115, 17, 203eqtr3d 2652 1 (𝜑 → ((𝑁𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  cfv 5790  (class class class)co 6527  Basecbs 15644  .rcmulr 15718  Grpcgrp 17194  invgcminusg 17195  1rcur 18273  Ringcrg 18319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-plusg 15730  df-0g 15874  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-grp 17197  df-minusg 17198  df-mgp 18262  df-ur 18274  df-ring 18321
This theorem is referenced by:  ringm2neg  18370  rngsubdir  18372  mulgass2  18373  cntzsubr  18584  mdetunilem7  20191
  Copyright terms: Public domain W3C validator