Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segcon2 Structured version   Visualization version   GIF version

Theorem segcon2 32510
Description: Generalization of axsegcon 25998. This time, we generate an endpoint for a segment on the ray 𝑄𝐴 congruent to 𝐵𝐶 and starting at 𝑄, as opposed to axsegcon 25998, where the segment starts at 𝐴 (Contributed by Scott Fenton, 14-Oct-2013.) (Removed unneeded inequality, 15-Oct-2013.)
Assertion
Ref Expression
segcon2 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
Distinct variable groups:   𝑥,𝑄   𝑥,𝑁   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem segcon2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 breq1 4799 . . . . 5 (𝐴 = 𝑄 → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ↔ 𝑄 Btwn ⟨𝑄, 𝑥⟩))
21orbi1d 741 . . . 4 (𝐴 = 𝑄 → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ↔ (𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
32anbi1d 743 . . 3 (𝐴 = 𝑄 → (((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
43rexbidv 3182 . 2 (𝐴 = 𝑄 → (∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
5 simp1 1130 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
6 simp2 1131 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)))
76ancomd 466 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)))
8 axsegcon 25998 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))
95, 7, 7, 8syl3anc 1473 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))
109adantr 472 . . 3 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))
11 simpl1 1225 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
12 simpr 479 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (𝔼‘𝑁))
13 simpl2l 1280 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑄 ∈ (𝔼‘𝑁))
14 simpl3 1229 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
15 axsegcon 25998 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
1611, 12, 13, 14, 15syl121anc 1478 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
1716adantr 472 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
18 anass 684 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))))
19 df-3an 1074 . . . . . . . . . . . . 13 ((𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) ↔ ((𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩)) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩))
20 simpr1 1231 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝐴𝑄)
21 simpr2r 1294 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩)
22 simpl1 1225 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
23 simpl2l 1280 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑄 ∈ (𝔼‘𝑁))
24 simprl 811 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑎 ∈ (𝔼‘𝑁))
25 simpl2r 1282 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
26 cgrdegen 32409 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩ → (𝑄 = 𝑎𝐴 = 𝑄)))
2722, 23, 24, 25, 23, 26syl122anc 1482 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩ → (𝑄 = 𝑎𝐴 = 𝑄)))
2827adantr 472 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩ → (𝑄 = 𝑎𝐴 = 𝑄)))
2921, 28mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝑄 = 𝑎𝐴 = 𝑄))
3029necon3bid 2968 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝑄𝑎𝐴𝑄))
3120, 30mpbird 247 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄𝑎)
3231necomd 2979 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑎𝑄)
33 simpr2l 1292 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄 Btwn ⟨𝐴, 𝑎⟩)
3422, 23, 25, 24, 33btwncomand 32420 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄 Btwn ⟨𝑎, 𝐴⟩)
35 simpr3 1235 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄 Btwn ⟨𝑎, 𝑥⟩)
36 simprr 813 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑥 ∈ (𝔼‘𝑁))
37 btwnconn2 32507 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑎𝑄𝑄 Btwn ⟨𝑎, 𝐴⟩ ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
3822, 24, 23, 25, 36, 37syl122anc 1482 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑎𝑄𝑄 Btwn ⟨𝑎, 𝐴⟩ ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
3938adantr 472 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → ((𝑎𝑄𝑄 Btwn ⟨𝑎, 𝐴⟩ ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
4032, 34, 35, 39mp3and 1568 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩))
4119, 40sylan2br 494 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩)) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩))
4241expr 644 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → (𝑄 Btwn ⟨𝑎, 𝑥⟩ → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
4342anim1d 589 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ((𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4418, 43sylanb 490 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ((𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4544an32s 881 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4645reximdva 3147 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4717, 46mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
4847expr 644 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝐴𝑄) → ((𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4948an32s 881 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) ∧ 𝑎 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
5049rexlimdva 3161 . . 3 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) → (∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
5110, 50mpd 15 . 2 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
52 simp2l 1239 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑄 ∈ (𝔼‘𝑁))
53 simp3 1132 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
54 axsegcon 25998 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
555, 52, 52, 53, 54syl121anc 1478 . . 3 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
56 orc 399 . . . . 5 (𝑄 Btwn ⟨𝑄, 𝑥⟩ → (𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩))
5756anim1i 593 . . . 4 ((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
5857reximi 3141 . . 3 (∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
5955, 58syl 17 . 2 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
604, 51, 59pm2.61ne 3009 1 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924  wrex 3043  cop 4319   class class class wbr 4796  cfv 6041  cn 11204  𝔼cee 25959   Btwn cbtwn 25960  Cgrccgr 25961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-ico 12366  df-icc 12367  df-fz 12512  df-fzo 12652  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-sum 14608  df-ee 25962  df-btwn 25963  df-cgr 25964  df-ofs 32388  df-colinear 32444  df-ifs 32445  df-cgr3 32446  df-fs 32447
This theorem is referenced by:  seglelin  32521  outsideofeu  32536
  Copyright terms: Public domain W3C validator