MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcaopr3 Structured version   Visualization version   GIF version

Theorem seqcaopr3 13406
Description: Lemma for seqcaopr2 13407. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqcaopr3.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqcaopr3.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
seqcaopr3.3 (𝜑𝑁 ∈ (ℤ𝑀))
seqcaopr3.4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
seqcaopr3.5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ 𝑆)
seqcaopr3.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
seqcaopr3.7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
Assertion
Ref Expression
seqcaopr3 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝑛,𝑥,𝑦,𝐹   𝑘,𝐻,𝑛   𝑘,𝑁,𝑛,𝑥,𝑦   𝜑,𝑘,𝑛,𝑥,𝑦   𝑘,𝐺,𝑛,𝑥,𝑦   𝑘,𝑀,𝑛,𝑥,𝑦   𝑄,𝑘,𝑛,𝑥,𝑦   + ,𝑛,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦
Allowed substitution hints:   + (𝑘)   𝑆(𝑛)   𝐻(𝑥,𝑦)

Proof of Theorem seqcaopr3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 seqcaopr3.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 12916 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 6670 . . . . 5 (𝑧 = 𝑀 → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘𝑀))
5 fveq2 6670 . . . . . 6 (𝑧 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑀))
6 fveq2 6670 . . . . . 6 (𝑧 = 𝑀 → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑀))
75, 6oveq12d 7174 . . . . 5 (𝑧 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)))
84, 7eqeq12d 2837 . . . 4 (𝑧 = 𝑀 → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀))))
98imbi2d 343 . . 3 (𝑧 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)))))
10 fveq2 6670 . . . . 5 (𝑧 = 𝑛 → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘𝑛))
11 fveq2 6670 . . . . . 6 (𝑧 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑛))
12 fveq2 6670 . . . . . 6 (𝑧 = 𝑛 → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑛))
1311, 12oveq12d 7174 . . . . 5 (𝑧 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)))
1410, 13eqeq12d 2837 . . . 4 (𝑧 = 𝑛 → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛))))
1514imbi2d 343 . . 3 (𝑧 = 𝑛 → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)))))
16 fveq2 6670 . . . . 5 (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘(𝑛 + 1)))
17 fveq2 6670 . . . . . 6 (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))
18 fveq2 6670 . . . . . 6 (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘(𝑛 + 1)))
1917, 18oveq12d 7174 . . . . 5 (𝑧 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))))
2016, 19eqeq12d 2837 . . . 4 (𝑧 = (𝑛 + 1) → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1)))))
2120imbi2d 343 . . 3 (𝑧 = (𝑛 + 1) → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))))))
22 fveq2 6670 . . . . 5 (𝑧 = 𝑁 → (seq𝑀( + , 𝐻)‘𝑧) = (seq𝑀( + , 𝐻)‘𝑁))
23 fveq2 6670 . . . . . 6 (𝑧 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑁))
24 fveq2 6670 . . . . . 6 (𝑧 = 𝑁 → (seq𝑀( + , 𝐺)‘𝑧) = (seq𝑀( + , 𝐺)‘𝑁))
2523, 24oveq12d 7174 . . . . 5 (𝑧 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
2622, 25eqeq12d 2837 . . . 4 (𝑧 = 𝑁 → ((seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧)) ↔ (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))))
2726imbi2d 343 . . 3 (𝑧 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑧) = ((seq𝑀( + , 𝐹)‘𝑧)𝑄(seq𝑀( + , 𝐺)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))))
28 fveq2 6670 . . . . . . 7 (𝑘 = 𝑀 → (𝐻𝑘) = (𝐻𝑀))
29 fveq2 6670 . . . . . . . 8 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
30 fveq2 6670 . . . . . . . 8 (𝑘 = 𝑀 → (𝐺𝑘) = (𝐺𝑀))
3129, 30oveq12d 7174 . . . . . . 7 (𝑘 = 𝑀 → ((𝐹𝑘)𝑄(𝐺𝑘)) = ((𝐹𝑀)𝑄(𝐺𝑀)))
3228, 31eqeq12d 2837 . . . . . 6 (𝑘 = 𝑀 → ((𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)) ↔ (𝐻𝑀) = ((𝐹𝑀)𝑄(𝐺𝑀))))
33 seqcaopr3.6 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
3433ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
35 eluzfz1 12915 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
361, 35syl 17 . . . . . 6 (𝜑𝑀 ∈ (𝑀...𝑁))
3732, 34, 36rspcdva 3625 . . . . 5 (𝜑 → (𝐻𝑀) = ((𝐹𝑀)𝑄(𝐺𝑀)))
38 eluzel2 12249 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
391, 38syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
40 seq1 13383 . . . . . 6 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐻)‘𝑀) = (𝐻𝑀))
4139, 40syl 17 . . . . 5 (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = (𝐻𝑀))
42 seq1 13383 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
43 seq1 13383 . . . . . . 7 (𝑀 ∈ ℤ → (seq𝑀( + , 𝐺)‘𝑀) = (𝐺𝑀))
4442, 43oveq12d 7174 . . . . . 6 (𝑀 ∈ ℤ → ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)) = ((𝐹𝑀)𝑄(𝐺𝑀)))
4539, 44syl 17 . . . . 5 (𝜑 → ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)) = ((𝐹𝑀)𝑄(𝐺𝑀)))
4637, 41, 453eqtr4d 2866 . . . 4 (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀)))
4746a1i 11 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( + , 𝐻)‘𝑀) = ((seq𝑀( + , 𝐹)‘𝑀)𝑄(seq𝑀( + , 𝐺)‘𝑀))))
48 oveq1 7163 . . . . . 6 ((seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) → ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1))))
49 elfzouz 13043 . . . . . . . . 9 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
5049adantl 484 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ𝑀))
51 seqp1 13385 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1))))
5250, 51syl 17 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1))))
53 seqcaopr3.7 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
54 fveq2 6670 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → (𝐻𝑘) = (𝐻‘(𝑛 + 1)))
55 fveq2 6670 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
56 fveq2 6670 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (𝐺𝑘) = (𝐺‘(𝑛 + 1)))
5755, 56oveq12d 7174 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → ((𝐹𝑘)𝑄(𝐺𝑘)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))
5854, 57eqeq12d 2837 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → ((𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)) ↔ (𝐻‘(𝑛 + 1)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))))
5934adantr 483 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (𝑀...𝑁)(𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
60 fzofzp1 13135 . . . . . . . . . . 11 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
6160adantl 484 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈ (𝑀...𝑁))
6258, 59, 61rspcdva 3625 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐻‘(𝑛 + 1)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))
6362oveq2d 7172 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))))
64 seqp1 13385 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
65 seqp1 13385 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐺)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1))))
6664, 65oveq12d 7174 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑀) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
6750, 66syl 17 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))))
6853, 63, 673eqtr4rd 2867 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1))))
6952, 68eqeq12d 2837 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))) ↔ ((seq𝑀( + , 𝐻)‘𝑛) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) + (𝐻‘(𝑛 + 1)))))
7048, 69syl5ibr 248 . . . . 5 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1)))))
7170expcom 416 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛)) → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))))))
7271a2d 29 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( + , 𝐻)‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛)𝑄(seq𝑀( + , 𝐺)‘𝑛))) → (𝜑 → (seq𝑀( + , 𝐻)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺)‘(𝑛 + 1))))))
739, 15, 21, 27, 47, 72fzind2 13156 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁))))
743, 73mpcom 38 1 (𝜑 → (seq𝑀( + , 𝐻)‘𝑁) = ((seq𝑀( + , 𝐹)‘𝑁)𝑄(seq𝑀( + , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  cfv 6355  (class class class)co 7156  1c1 10538   + caddc 10540  cz 11982  cuz 12244  ...cfz 12893  ..^cfzo 13034  seqcseq 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371
This theorem is referenced by:  seqcaopr2  13407  gsumzaddlem  19041
  Copyright terms: Public domain W3C validator