MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqp1 Structured version   Visualization version   GIF version

Theorem seqp1 13385
Description: Value of the sequence builder function at a successor. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
seqp1 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))

Proof of Theorem seqp1
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluzel2 12249 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 fveq2 6670 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ𝑀) = (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)))
32eleq2d 2898 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))))
4 seqeq1 13373 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → seq𝑀( + , 𝐹) = seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹))
54fveq1d 6672 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)))
64fveq1d 6672 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹)‘𝑁) = (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁))
76oveq2d 7172 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁)))
85, 7eqeq12d 2837 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) ↔ (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁))))
93, 8imbi12d 347 . . . 4 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))) ↔ (𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁)))))
10 0z 11993 . . . . . 6 0 ∈ ℤ
1110elimel 4534 . . . . 5 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
12 eqid 2821 . . . . 5 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω)
13 fvex 6683 . . . . 5 (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V
14 eqid 2821 . . . . 5 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω)
1514seqval 13381 . . . . 5 seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω)
1611, 12, 13, 14, 15uzrdgsuci 13329 . . . 4 (𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹)‘𝑁)))
179, 16dedth 4523 . . 3 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁))))
181, 17mpcom 38 . 2 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)))
19 elex 3512 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ V)
20 fvex 6683 . . 3 (seq𝑀( + , 𝐹)‘𝑁) ∈ V
21 fvoveq1 7179 . . . . 5 (𝑧 = 𝑁 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑁 + 1)))
2221oveq2d 7172 . . . 4 (𝑧 = 𝑁 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑁 + 1))))
23 oveq1 7163 . . . 4 (𝑤 = (seq𝑀( + , 𝐹)‘𝑁) → (𝑤 + (𝐹‘(𝑁 + 1))) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
24 eqid 2821 . . . 4 (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
25 ovex 7189 . . . 4 ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))) ∈ V
2622, 23, 24, 25ovmpo 7310 . . 3 ((𝑁 ∈ V ∧ (seq𝑀( + , 𝐹)‘𝑁) ∈ V) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
2719, 20, 26sylancl 588 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑁(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))(seq𝑀( + , 𝐹)‘𝑁)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
2818, 27eqtrd 2856 1 (𝑁 ∈ (ℤ𝑀) → (seq𝑀( + , 𝐹)‘(𝑁 + 1)) = ((seq𝑀( + , 𝐹)‘𝑁) + (𝐹‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  Vcvv 3494  ifcif 4467  cop 4573  cmpt 5146  cres 5557  cfv 6355  (class class class)co 7156  cmpo 7158  ωcom 7580  reccrdg 8045  0cc0 10537  1c1 10538   + caddc 10540  cz 11982  cuz 12244  seqcseq 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-seq 13371
This theorem is referenced by:  seqexw  13386  seqp1i  13387  seqm1  13388  seqcl2  13389  seqfveq2  13393  seqshft2  13397  sermono  13403  seqsplit  13404  seqcaopr3  13406  seqf1olem2a  13409  seqf1olem2  13411  seqid2  13417  seqhomo  13418  ser1const  13427  expp1  13437  facp1  13639  seqcoll  13823  relexpsucnnr  14384  climserle  15019  iseraltlem2  15039  iseraltlem3  15040  climcndslem1  15204  climcndslem2  15205  clim2prod  15244  prodfn0  15250  prodfrec  15251  ntrivcvgfvn0  15255  ruclem7  15589  sadcp1  15804  smupp1  15829  seq1st  15915  algrp1  15918  eulerthlem2  16119  pcmpt  16228  gsumsplit1r  17897  gsumprval  17898  mulgfval  18226  mulgnnp1  18236  ovolunlem1a  24097  voliunlem1  24151  volsup  24157  dvnp1  24522  bposlem5  25864  opsqrlem5  29921  esumfzf  31328  esumpcvgval  31337  sseqp1  31653  rrvsum  31712  gsumnunsn  31811  iprodefisumlem  32972  faclimlem1  32975  heiborlem4  35107  heiborlem6  35109  fmul01  41881  fmuldfeqlem1  41883  stoweidlem3  42308  wallispilem4  42373  wallispi2lem1  42376  wallispi2lem2  42377
  Copyright terms: Public domain W3C validator