Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xp Structured version   Visualization version   GIF version

Theorem sge0xp 39969
Description: Combine two generalized sums of nonnegative extended reals into a single generalized sum over the cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xp.1 𝑘𝜑
sge0xp.z (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
sge0xp.a (𝜑𝐴𝑉)
sge0xp.b (𝜑𝐵𝑊)
sge0xp.d ((𝜑𝑗𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0xp (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑧   𝐵,𝑗,𝑘,𝑧   𝑧,𝐶   𝐷,𝑗,𝑘   𝜑,𝑗,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑗,𝑘)   𝐷(𝑧)   𝑉(𝑧,𝑗,𝑘)   𝑊(𝑧,𝑗,𝑘)

Proof of Theorem sge0xp
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 sge0xp.a . . 3 (𝜑𝐴𝑉)
2 snex 4871 . . . . . 6 {𝑗} ∈ V
32a1i 11 . . . . 5 (𝜑 → {𝑗} ∈ V)
4 sge0xp.b . . . . 5 (𝜑𝐵𝑊)
5 xpexg 6916 . . . . 5 (({𝑗} ∈ V ∧ 𝐵𝑊) → ({𝑗} × 𝐵) ∈ V)
63, 4, 5syl2anc 692 . . . 4 (𝜑 → ({𝑗} × 𝐵) ∈ V)
76adantr 481 . . 3 ((𝜑𝑗𝐴) → ({𝑗} × 𝐵) ∈ V)
8 disjsnxp 38743 . . . 4 Disj 𝑗𝐴 ({𝑗} × 𝐵)
98a1i 11 . . 3 (𝜑Disj 𝑗𝐴 ({𝑗} × 𝐵))
10 vex 3189 . . . . . . . 8 𝑗 ∈ V
11 elsnxp 5638 . . . . . . . 8 (𝑗 ∈ V → (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩))
1210, 11ax-mp 5 . . . . . . 7 (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
1312biimpi 206 . . . . . 6 (𝑧 ∈ ({𝑗} × 𝐵) → ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
1413adantl 482 . . . . 5 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
15 sge0xp.1 . . . . . . . 8 𝑘𝜑
16 nfv 1840 . . . . . . . 8 𝑘 𝑗𝐴
1715, 16nfan 1825 . . . . . . 7 𝑘(𝜑𝑗𝐴)
18 nfv 1840 . . . . . . 7 𝑘 𝑧 ∈ ({𝑗} × 𝐵)
1917, 18nfan 1825 . . . . . 6 𝑘((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵))
20 nfv 1840 . . . . . 6 𝑘 𝐷 ∈ (0[,]+∞)
21 sge0xp.z . . . . . . . . . 10 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
22213ad2ant3 1082 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐷 = 𝐶)
23 sge0xp.d . . . . . . . . . . 11 ((𝜑𝑗𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
24233expa 1262 . . . . . . . . . 10 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
25243adant3 1079 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐶 ∈ (0[,]+∞))
2622, 25eqeltrd 2698 . . . . . . . 8 (((𝜑𝑗𝐴) ∧ 𝑘𝐵𝑧 = ⟨𝑗, 𝑘⟩) → 𝐷 ∈ (0[,]+∞))
27263exp 1261 . . . . . . 7 ((𝜑𝑗𝐴) → (𝑘𝐵 → (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞))))
2827adantr 481 . . . . . 6 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (𝑘𝐵 → (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞))))
2919, 20, 28rexlimd 3019 . . . . 5 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 ∈ (0[,]+∞)))
3014, 29mpd 15 . . . 4 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝐷 ∈ (0[,]+∞))
31303impa 1256 . . 3 ((𝜑𝑗𝐴𝑧 ∈ ({𝑗} × 𝐵)) → 𝐷 ∈ (0[,]+∞))
321, 7, 9, 31sge0iunmpt 39958 . 2 (𝜑 → (Σ^‘(𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))))
33 iunxpconst 5138 . . . . . 6 𝑗𝐴 ({𝑗} × 𝐵) = (𝐴 × 𝐵)
3433eqcomi 2630 . . . . 5 (𝐴 × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵)
3534a1i 11 . . . 4 (𝜑 → (𝐴 × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
3635mpteq1d 4700 . . 3 (𝜑 → (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷) = (𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷))
3736fveq2d 6154 . 2 (𝜑 → (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↦ 𝐷)))
38 nfv 1840 . . . 4 𝑗𝜑
39 nfv 1840 . . . . . 6 𝑧(𝜑𝑗𝐴)
404adantr 481 . . . . . 6 ((𝜑𝑗𝐴) → 𝐵𝑊)
41 simpr 477 . . . . . . 7 ((𝜑𝑗𝐴) → 𝑗𝐴)
42 eqid 2621 . . . . . . 7 (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩) = (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)
4341, 42projf1o 38878 . . . . . 6 ((𝜑𝑗𝐴) → (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩):𝐵1-1-onto→({𝑗} × 𝐵))
44 eqidd 2622 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩) = (𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩))
45 opeq2 4373 . . . . . . . . 9 (𝑖 = 𝑘 → ⟨𝑗, 𝑖⟩ = ⟨𝑗, 𝑘⟩)
4645adantl 482 . . . . . . . 8 (((𝜑𝑘𝐵) ∧ 𝑖 = 𝑘) → ⟨𝑗, 𝑖⟩ = ⟨𝑗, 𝑘⟩)
47 simpr 477 . . . . . . . 8 ((𝜑𝑘𝐵) → 𝑘𝐵)
48 opex 4895 . . . . . . . . 9 𝑗, 𝑘⟩ ∈ V
4948a1i 11 . . . . . . . 8 ((𝜑𝑘𝐵) → ⟨𝑗, 𝑘⟩ ∈ V)
5044, 46, 47, 49fvmptd 6247 . . . . . . 7 ((𝜑𝑘𝐵) → ((𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)‘𝑘) = ⟨𝑗, 𝑘⟩)
5150adantlr 750 . . . . . 6 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → ((𝑖𝐵 ↦ ⟨𝑗, 𝑖⟩)‘𝑘) = ⟨𝑗, 𝑘⟩)
5239, 17, 21, 40, 43, 51, 30sge0f1o 39922 . . . . 5 ((𝜑𝑗𝐴) → (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)) = (Σ^‘(𝑘𝐵𝐶)))
5352eqcomd 2627 . . . 4 ((𝜑𝑗𝐴) → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))
5438, 53mpteq2da 4705 . . 3 (𝜑 → (𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷))))
5554fveq2d 6154 . 2 (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑧 ∈ ({𝑗} × 𝐵) ↦ 𝐷)))))
5632, 37, 553eqtr4rd 2666 1 (𝜑 → (Σ^‘(𝑗𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) = (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wnf 1705  wcel 1987  wrex 2908  Vcvv 3186  {csn 4150  cop 4156   ciun 4487  Disj wdisj 4585  cmpt 4675   × cxp 5074  cfv 5849  (class class class)co 6607  0cc0 9883  +∞cpnf 10018  [,]cicc 12123  Σ^csumge0 39902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-inf2 8485  ax-ac2 9232  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-disj 4586  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-se 5036  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-isom 5858  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-sup 8295  df-oi 8362  df-card 8712  df-acn 8715  df-ac 8886  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-2 11026  df-3 11027  df-n0 11240  df-z 11325  df-uz 11635  df-rp 11780  df-xadd 11894  df-ico 12126  df-icc 12127  df-fz 12272  df-fzo 12410  df-seq 12745  df-exp 12804  df-hash 13061  df-cj 13776  df-re 13777  df-im 13778  df-sqrt 13912  df-abs 13913  df-clim 14156  df-sum 14354  df-sumge0 39903
This theorem is referenced by:  ovnsubaddlem1  40107
  Copyright terms: Public domain W3C validator