Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signshf Structured version   Visualization version   GIF version

Theorem signshf 31858
Description: 𝐻, corresponding to the word 𝐹 multiplied by (𝑥𝐶), as a function. (Contributed by Thierry Arnoux, 29-Sep-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signs.h 𝐻 = ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶))
Assertion
Ref Expression
signshf ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛
Allowed substitution hints:   𝐶(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐻(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signshf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resubcl 10950 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
21adantl 484 . . 3 (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥𝑦) ∈ ℝ)
3 0re 10643 . . . . . . . 8 0 ∈ ℝ
4 s1cl 13956 . . . . . . . 8 (0 ∈ ℝ → ⟨“0”⟩ ∈ Word ℝ)
53, 4ax-mp 5 . . . . . . 7 ⟨“0”⟩ ∈ Word ℝ
6 ccatcl 13926 . . . . . . 7 ((⟨“0”⟩ ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (⟨“0”⟩ ++ 𝐹) ∈ Word ℝ)
75, 6mpan 688 . . . . . 6 (𝐹 ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹) ∈ Word ℝ)
8 wrdf 13867 . . . . . 6 ((⟨“0”⟩ ++ 𝐹) ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ)
97, 8syl 17 . . . . 5 (𝐹 ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ)
10 1cnd 10636 . . . . . . . 8 (𝐹 ∈ Word ℝ → 1 ∈ ℂ)
11 lencl 13883 . . . . . . . . 9 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
1211nn0cnd 11958 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℂ)
13 ccatlen 13927 . . . . . . . . . 10 ((⟨“0”⟩ ∈ Word ℝ ∧ 𝐹 ∈ Word ℝ) → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘⟨“0”⟩) + (♯‘𝐹)))
145, 13mpan 688 . . . . . . . . 9 (𝐹 ∈ Word ℝ → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘⟨“0”⟩) + (♯‘𝐹)))
15 s1len 13960 . . . . . . . . . 10 (♯‘⟨“0”⟩) = 1
1615oveq1i 7166 . . . . . . . . 9 ((♯‘⟨“0”⟩) + (♯‘𝐹)) = (1 + (♯‘𝐹))
1714, 16syl6eq 2872 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘(⟨“0”⟩ ++ 𝐹)) = (1 + (♯‘𝐹)))
1810, 12, 17comraddd 10854 . . . . . . 7 (𝐹 ∈ Word ℝ → (♯‘(⟨“0”⟩ ++ 𝐹)) = ((♯‘𝐹) + 1))
1918oveq2d 7172 . . . . . 6 (𝐹 ∈ Word ℝ → (0..^(♯‘(⟨“0”⟩ ++ 𝐹))) = (0..^((♯‘𝐹) + 1)))
2019feq2d 6500 . . . . 5 (𝐹 ∈ Word ℝ → ((⟨“0”⟩ ++ 𝐹):(0..^(♯‘(⟨“0”⟩ ++ 𝐹)))⟶ℝ ↔ (⟨“0”⟩ ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ))
219, 20mpbid 234 . . . 4 (𝐹 ∈ Word ℝ → (⟨“0”⟩ ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ)
2221adantr 483 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (⟨“0”⟩ ++ 𝐹):(0..^((♯‘𝐹) + 1))⟶ℝ)
23 remulcl 10622 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
2423adantl 484 . . . 4 (((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
25 ccatcl 13926 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ ⟨“0”⟩ ∈ Word ℝ) → (𝐹 ++ ⟨“0”⟩) ∈ Word ℝ)
265, 25mpan2 689 . . . . . . 7 (𝐹 ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩) ∈ Word ℝ)
27 wrdf 13867 . . . . . . 7 ((𝐹 ++ ⟨“0”⟩) ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ)
2826, 27syl 17 . . . . . 6 (𝐹 ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ)
29 ccatws1len 13974 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘(𝐹 ++ ⟨“0”⟩)) = ((♯‘𝐹) + 1))
3029oveq2d 7172 . . . . . . 7 (𝐹 ∈ Word ℝ → (0..^(♯‘(𝐹 ++ ⟨“0”⟩))) = (0..^((♯‘𝐹) + 1)))
3130feq2d 6500 . . . . . 6 (𝐹 ∈ Word ℝ → ((𝐹 ++ ⟨“0”⟩):(0..^(♯‘(𝐹 ++ ⟨“0”⟩)))⟶ℝ ↔ (𝐹 ++ ⟨“0”⟩):(0..^((♯‘𝐹) + 1))⟶ℝ))
3228, 31mpbid 234 . . . . 5 (𝐹 ∈ Word ℝ → (𝐹 ++ ⟨“0”⟩):(0..^((♯‘𝐹) + 1))⟶ℝ)
3332adantr 483 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (𝐹 ++ ⟨“0”⟩):(0..^((♯‘𝐹) + 1))⟶ℝ)
34 ovexd 7191 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (0..^((♯‘𝐹) + 1)) ∈ V)
35 rpre 12398 . . . . 5 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
3635adantl 484 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
3724, 33, 34, 36ofcf 31362 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶):(0..^((♯‘𝐹) + 1))⟶ℝ)
38 inidm 4195 . . 3 ((0..^((♯‘𝐹) + 1)) ∩ (0..^((♯‘𝐹) + 1))) = (0..^((♯‘𝐹) + 1))
392, 22, 37, 34, 34, 38off 7424 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ)
40 signs.h . . 3 𝐻 = ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶))
4140feq1i 6505 . 2 (𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ ↔ ((⟨“0”⟩ ++ 𝐹) ∘f − ((𝐹 ++ ⟨“0”⟩) ∘f/c · 𝐶)):(0..^((♯‘𝐹) + 1))⟶ℝ)
4239, 41sylibr 236 1 ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  ifcif 4467  {cpr 4569  {ctp 4571  cop 4573  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  f cof 7407  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870  -cneg 10871  +crp 12390  ...cfz 12893  ..^cfzo 13034  chash 13691  Word cword 13862   ++ cconcat 13922  ⟨“cs1 13949  sgncsgn 14445  Σcsu 15042  ndxcnx 16480  Basecbs 16483  +gcplusg 16565   Σg cgsu 16714  f/c cofc 31354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-ofc 31355
This theorem is referenced by:  signshwrd  31859  signshlen  31860
  Copyright terms: Public domain W3C validator