MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1mgm Structured version   Visualization version   GIF version

Theorem smndex1mgm 18072
Description: The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a magma. (Contributed by AV, 14-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1mgm 𝑆 ∈ Mgm
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑥,𝑛)

Proof of Theorem smndex1mgm
Dummy variables 𝑏 𝑘 𝑎 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.m . . . . . . 7 𝑀 = (EndoFMnd‘ℕ0)
2 smndex1ibas.n . . . . . . 7 𝑁 ∈ ℕ
3 smndex1ibas.i . . . . . . 7 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
4 smndex1ibas.g . . . . . . 7 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
5 smndex1mgm.b . . . . . . 7 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
61, 2, 3, 4, 5smndex1basss 18070 . . . . . 6 𝐵 ⊆ (Base‘𝑀)
7 ssel 3961 . . . . . . 7 (𝐵 ⊆ (Base‘𝑀) → (𝑎𝐵𝑎 ∈ (Base‘𝑀)))
8 ssel 3961 . . . . . . 7 (𝐵 ⊆ (Base‘𝑀) → (𝑏𝐵𝑏 ∈ (Base‘𝑀)))
97, 8anim12d 610 . . . . . 6 (𝐵 ⊆ (Base‘𝑀) → ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀))))
106, 9ax-mp 5 . . . . 5 ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)))
11 eqid 2821 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
12 eqid 2821 . . . . . 6 (+g𝑀) = (+g𝑀)
131, 11, 12efmndov 18046 . . . . 5 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑎(+g𝑀)𝑏) = (𝑎𝑏))
1410, 13syl 17 . . . 4 ((𝑎𝐵𝑏𝐵) → (𝑎(+g𝑀)𝑏) = (𝑎𝑏))
15 simpl 485 . . . . . . . . . . . 12 ((𝑎 = 𝐼𝑏 = 𝐼) → 𝑎 = 𝐼)
16 simpr 487 . . . . . . . . . . . 12 ((𝑎 = 𝐼𝑏 = 𝐼) → 𝑏 = 𝐼)
1715, 16coeq12d 5735 . . . . . . . . . . 11 ((𝑎 = 𝐼𝑏 = 𝐼) → (𝑎𝑏) = (𝐼𝐼))
181, 2, 3smndex1iidm 18066 . . . . . . . . . . 11 (𝐼𝐼) = 𝐼
1917, 18syl6eq 2872 . . . . . . . . . 10 ((𝑎 = 𝐼𝑏 = 𝐼) → (𝑎𝑏) = 𝐼)
2019orcd 869 . . . . . . . . 9 ((𝑎 = 𝐼𝑏 = 𝐼) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
2120ex 415 . . . . . . . 8 (𝑎 = 𝐼 → (𝑏 = 𝐼 → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
22 simpll 765 . . . . . . . . . . . . . . 15 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → 𝑎 = 𝐼)
23 simpr 487 . . . . . . . . . . . . . . 15 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → 𝑏 = (𝐺𝑘))
2422, 23coeq12d 5735 . . . . . . . . . . . . . 14 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → (𝑎𝑏) = (𝐼 ∘ (𝐺𝑘)))
251, 2, 3, 4smndex1igid 18069 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘))
2625ad2antlr 725 . . . . . . . . . . . . . 14 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → (𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘))
2724, 26eqtrd 2856 . . . . . . . . . . . . 13 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → (𝑎𝑏) = (𝐺𝑘))
2827ex 415 . . . . . . . . . . . 12 ((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) → (𝑏 = (𝐺𝑘) → (𝑎𝑏) = (𝐺𝑘)))
2928reximdva 3274 . . . . . . . . . . 11 (𝑎 = 𝐼 → (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
3029imp 409 . . . . . . . . . 10 ((𝑎 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
3130olcd 870 . . . . . . . . 9 ((𝑎 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
3231ex 415 . . . . . . . 8 (𝑎 = 𝐼 → (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
3321, 32jaod 855 . . . . . . 7 (𝑎 = 𝐼 → ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
34 simpr 487 . . . . . . . . . . . . . . 15 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → 𝑎 = (𝐺𝑘))
35 simpll 765 . . . . . . . . . . . . . . 15 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → 𝑏 = 𝐼)
3634, 35coeq12d 5735 . . . . . . . . . . . . . 14 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → (𝑎𝑏) = ((𝐺𝑘) ∘ 𝐼))
371, 2, 3smndex1ibas 18065 . . . . . . . . . . . . . . . 16 𝐼 ∈ (Base‘𝑀)
381, 2, 3, 4smndex1gid 18068 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
3937, 38mpan 688 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^𝑁) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
4039ad2antlr 725 . . . . . . . . . . . . . 14 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
4136, 40eqtrd 2856 . . . . . . . . . . . . 13 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → (𝑎𝑏) = (𝐺𝑘))
4241ex 415 . . . . . . . . . . . 12 ((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) → (𝑎 = (𝐺𝑘) → (𝑎𝑏) = (𝐺𝑘)))
4342reximdva 3274 . . . . . . . . . . 11 (𝑏 = 𝐼 → (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
4443imp 409 . . . . . . . . . 10 ((𝑏 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
4544olcd 870 . . . . . . . . 9 ((𝑏 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
4645expcom 416 . . . . . . . 8 (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → (𝑏 = 𝐼 → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
47 fveq2 6670 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝐺𝑘) = (𝐺𝑚))
4847eqeq2d 2832 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝑏 = (𝐺𝑘) ↔ 𝑏 = (𝐺𝑚)))
4948cbvrexvw 3450 . . . . . . . . 9 (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘) ↔ ∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚))
50 simpr 487 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → 𝑎 = (𝐺𝑘))
51 simpllr 774 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → 𝑏 = (𝐺𝑚))
5250, 51coeq12d 5735 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → (𝑎𝑏) = ((𝐺𝑘) ∘ (𝐺𝑚)))
531, 2, 3, 4smndex1gbas 18067 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (0..^𝑁) → (𝐺𝑚) ∈ (Base‘𝑀))
541, 2, 3, 4smndex1gid 18068 . . . . . . . . . . . . . . . . . 18 (((𝐺𝑚) ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺𝑘) ∘ (𝐺𝑚)) = (𝐺𝑘))
5553, 54sylan 582 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺𝑘) ∘ (𝐺𝑚)) = (𝐺𝑘))
5655ad4ant13 749 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → ((𝐺𝑘) ∘ (𝐺𝑚)) = (𝐺𝑘))
5752, 56eqtrd 2856 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → (𝑎𝑏) = (𝐺𝑘))
5857ex 415 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑎 = (𝐺𝑘) → (𝑎𝑏) = (𝐺𝑘)))
5958reximdva 3274 . . . . . . . . . . . . 13 ((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) → (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
6059rexlimiva 3281 . . . . . . . . . . . 12 (∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚) → (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
6160imp 409 . . . . . . . . . . 11 ((∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚) ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
6261olcd 870 . . . . . . . . . 10 ((∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚) ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
6362expcom 416 . . . . . . . . 9 (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → (∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
6449, 63syl5bi 244 . . . . . . . 8 (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
6546, 64jaod 855 . . . . . . 7 (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
6633, 65jaoi 853 . . . . . 6 ((𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
6766imp 409 . . . . 5 (((𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) ∧ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘))) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
685eleq2i 2904 . . . . . . . 8 (𝑎𝐵𝑎 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
69 fveq2 6670 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
7069sneqd 4579 . . . . . . . . . . 11 (𝑛 = 𝑘 → {(𝐺𝑛)} = {(𝐺𝑘)})
7170cbviunv 4965 . . . . . . . . . 10 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} = 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}
7271uneq2i 4136 . . . . . . . . 9 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) = ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)})
7372eleq2i 2904 . . . . . . . 8 (𝑎 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ 𝑎 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
7468, 73bitri 277 . . . . . . 7 (𝑎𝐵𝑎 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
75 elun 4125 . . . . . . 7 (𝑎 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑎 ∈ {𝐼} ∨ 𝑎 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
76 velsn 4583 . . . . . . . 8 (𝑎 ∈ {𝐼} ↔ 𝑎 = 𝐼)
77 eliun 4923 . . . . . . . . 9 (𝑎 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑎 ∈ {(𝐺𝑘)})
78 velsn 4583 . . . . . . . . . 10 (𝑎 ∈ {(𝐺𝑘)} ↔ 𝑎 = (𝐺𝑘))
7978rexbii 3247 . . . . . . . . 9 (∃𝑘 ∈ (0..^𝑁)𝑎 ∈ {(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘))
8077, 79bitri 277 . . . . . . . 8 (𝑎 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘))
8176, 80orbi12i 911 . . . . . . 7 ((𝑎 ∈ {𝐼} ∨ 𝑎 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)))
8274, 75, 813bitri 299 . . . . . 6 (𝑎𝐵 ↔ (𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)))
835eleq2i 2904 . . . . . . . 8 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
8472eleq2i 2904 . . . . . . . 8 (𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ 𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
8583, 84bitri 277 . . . . . . 7 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
86 elun 4125 . . . . . . 7 (𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
87 velsn 4583 . . . . . . . 8 (𝑏 ∈ {𝐼} ↔ 𝑏 = 𝐼)
88 eliun 4923 . . . . . . . . 9 (𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)})
89 velsn 4583 . . . . . . . . . 10 (𝑏 ∈ {(𝐺𝑘)} ↔ 𝑏 = (𝐺𝑘))
9089rexbii 3247 . . . . . . . . 9 (∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘))
9188, 90bitri 277 . . . . . . . 8 (𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘))
9287, 91orbi12i 911 . . . . . . 7 ((𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)))
9385, 86, 923bitri 299 . . . . . 6 (𝑏𝐵 ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)))
9482, 93anbi12i 628 . . . . 5 ((𝑎𝐵𝑏𝐵) ↔ ((𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) ∧ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘))))
955eleq2i 2904 . . . . . . 7 ((𝑎𝑏) ∈ 𝐵 ↔ (𝑎𝑏) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
9672eleq2i 2904 . . . . . . 7 ((𝑎𝑏) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (𝑎𝑏) ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
9795, 96bitri 277 . . . . . 6 ((𝑎𝑏) ∈ 𝐵 ↔ (𝑎𝑏) ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
98 elun 4125 . . . . . 6 ((𝑎𝑏) ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ ((𝑎𝑏) ∈ {𝐼} ∨ (𝑎𝑏) ∈ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
99 vex 3497 . . . . . . . . 9 𝑎 ∈ V
100 vex 3497 . . . . . . . . 9 𝑏 ∈ V
10199, 100coex 7635 . . . . . . . 8 (𝑎𝑏) ∈ V
102101elsn 4582 . . . . . . 7 ((𝑎𝑏) ∈ {𝐼} ↔ (𝑎𝑏) = 𝐼)
103 eliun 4923 . . . . . . . 8 ((𝑎𝑏) ∈ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) ∈ {(𝐺𝑘)})
104101elsn 4582 . . . . . . . . 9 ((𝑎𝑏) ∈ {(𝐺𝑘)} ↔ (𝑎𝑏) = (𝐺𝑘))
105104rexbii 3247 . . . . . . . 8 (∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) ∈ {(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
106103, 105bitri 277 . . . . . . 7 ((𝑎𝑏) ∈ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
107102, 106orbi12i 911 . . . . . 6 (((𝑎𝑏) ∈ {𝐼} ∨ (𝑎𝑏) ∈ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
10897, 98, 1073bitri 299 . . . . 5 ((𝑎𝑏) ∈ 𝐵 ↔ ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
10967, 94, 1083imtr4i 294 . . . 4 ((𝑎𝐵𝑏𝐵) → (𝑎𝑏) ∈ 𝐵)
11014, 109eqeltrd 2913 . . 3 ((𝑎𝐵𝑏𝐵) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
111110rgen2 3203 . 2 𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵
112 smndex1mgm.s . . . 4 𝑆 = (𝑀s 𝐵)
113112ovexi 7190 . . 3 𝑆 ∈ V
1141, 2, 3, 4, 5, 112smndex1bas 18071 . . . . 5 (Base‘𝑆) = 𝐵
115114eqcomi 2830 . . . 4 𝐵 = (Base‘𝑆)
116115fvexi 6684 . . . . 5 𝐵 ∈ V
117112, 12ressplusg 16612 . . . . 5 (𝐵 ∈ V → (+g𝑀) = (+g𝑆))
118116, 117ax-mp 5 . . . 4 (+g𝑀) = (+g𝑆)
119115, 118ismgm 17853 . . 3 (𝑆 ∈ V → (𝑆 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))
120113, 119ax-mp 5 . 2 (𝑆 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵)
121111, 120mpbir 233 1 𝑆 ∈ Mgm
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  cun 3934  wss 3936  {csn 4567   ciun 4919  cmpt 5146  ccom 5559  cfv 6355  (class class class)co 7156  0cc0 10537  cn 11638  0cn0 11898  ..^cfzo 13034   mod cmo 13238  Basecbs 16483  s cress 16484  +gcplusg 16565  Mgmcmgm 17850  EndoFMndcefmnd 18033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-tset 16584  df-mgm 17852  df-efmnd 18034
This theorem is referenced by:  smndex1sgrp  18073
  Copyright terms: Public domain W3C validator