MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgugrp Structured version   Visualization version   GIF version

Theorem subrgugrp 18720
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1 𝑆 = (𝑅s 𝐴)
subrgugrp.2 𝑈 = (Unit‘𝑅)
subrgugrp.3 𝑉 = (Unit‘𝑆)
subrgugrp.4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
Assertion
Ref Expression
subrgugrp (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))

Proof of Theorem subrgugrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgugrp.1 . . 3 𝑆 = (𝑅s 𝐴)
2 subrgugrp.2 . . 3 𝑈 = (Unit‘𝑅)
3 subrgugrp.3 . . 3 𝑉 = (Unit‘𝑆)
41, 2, 3subrguss 18716 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
51subrgring 18704 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
6 eqid 2621 . . . 4 (1r𝑆) = (1r𝑆)
73, 61unit 18579 . . 3 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝑉)
8 ne0i 3897 . . 3 ((1r𝑆) ∈ 𝑉𝑉 ≠ ∅)
95, 7, 83syl 18 . 2 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ≠ ∅)
10 eqid 2621 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
111, 10ressmulr 15927 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
12113ad2ant1 1080 . . . . . . . 8 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (.r𝑅) = (.r𝑆))
1312oveqd 6621 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑆)𝑦))
14 eqid 2621 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
153, 14unitmulcl 18585 . . . . . . . 8 ((𝑆 ∈ Ring ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
165, 15syl3an1 1356 . . . . . . 7 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑆)𝑦) ∈ 𝑉)
1713, 16eqeltrd 2698 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
18173expa 1262 . . . . 5 (((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) ∧ 𝑦𝑉) → (𝑥(.r𝑅)𝑦) ∈ 𝑉)
1918ralrimiva 2960 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉)
20 eqid 2621 . . . . . 6 (invr𝑅) = (invr𝑅)
21 eqid 2621 . . . . . 6 (invr𝑆) = (invr𝑆)
221, 20, 3, 21subrginv 18717 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) = ((invr𝑆)‘𝑥))
233, 21unitinvcl 18595 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
245, 23sylan 488 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑆)‘𝑥) ∈ 𝑉)
2522, 24eqeltrd 2698 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → ((invr𝑅)‘𝑥) ∈ 𝑉)
2619, 25jca 554 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑥𝑉) → (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
2726ralrimiva 2960 . 2 (𝐴 ∈ (SubRing‘𝑅) → ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))
28 subrgrcl 18706 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
29 subrgugrp.4 . . . 4 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)
302, 29unitgrp 18588 . . 3 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
312, 29unitgrpbas 18587 . . . 4 𝑈 = (Base‘𝐺)
32 fvex 6158 . . . . . 6 (Unit‘𝑅) ∈ V
332, 32eqeltri 2694 . . . . 5 𝑈 ∈ V
34 eqid 2621 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
3534, 10mgpplusg 18414 . . . . . 6 (.r𝑅) = (+g‘(mulGrp‘𝑅))
3629, 35ressplusg 15914 . . . . 5 (𝑈 ∈ V → (.r𝑅) = (+g𝐺))
3733, 36ax-mp 5 . . . 4 (.r𝑅) = (+g𝐺)
382, 29, 20invrfval 18594 . . . 4 (invr𝑅) = (invg𝐺)
3931, 37, 38issubg2 17530 . . 3 (𝐺 ∈ Grp → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉𝑈𝑉 ≠ ∅ ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))))
4028, 30, 393syl 18 . 2 (𝐴 ∈ (SubRing‘𝑅) → (𝑉 ∈ (SubGrp‘𝐺) ↔ (𝑉𝑈𝑉 ≠ ∅ ∧ ∀𝑥𝑉 (∀𝑦𝑉 (𝑥(.r𝑅)𝑦) ∈ 𝑉 ∧ ((invr𝑅)‘𝑥) ∈ 𝑉))))
414, 9, 27, 40mpbir3and 1243 1 (𝐴 ∈ (SubRing‘𝑅) → 𝑉 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  Vcvv 3186  wss 3555  c0 3891  cfv 5847  (class class class)co 6604  s cress 15782  +gcplusg 15862  .rcmulr 15863  Grpcgrp 17343  SubGrpcsubg 17509  mulGrpcmgp 18410  1rcur 18422  Ringcrg 18468  Unitcui 18560  invrcinvr 18592  SubRingcsubrg 18697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-subg 17512  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-subrg 18699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator