MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3 Structured version   Visualization version   GIF version

Theorem sylow3 18751
Description: Sylow's third theorem. The number of Sylow subgroups is a divisor of 𝐺 ∣ / 𝑑, where 𝑑 is the common order of a Sylow subgroup, and is equivalent to 1 mod 𝑃. This is part of Metamath 100 proof #72. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3.n 𝑁 = (♯‘(𝑃 pSyl 𝐺))
Assertion
Ref Expression
sylow3 (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))

Proof of Theorem sylow3
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑥 𝑦 𝑧 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow3.g . . . 4 (𝜑𝐺 ∈ Grp)
2 sylow3.xf . . . 4 (𝜑𝑋 ∈ Fin)
3 sylow3.p . . . 4 (𝜑𝑃 ∈ ℙ)
4 sylow3.x . . . . 5 𝑋 = (Base‘𝐺)
54slwn0 18733 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝑃 pSyl 𝐺) ≠ ∅)
61, 2, 3, 5syl3anc 1366 . . 3 (𝜑 → (𝑃 pSyl 𝐺) ≠ ∅)
7 n0 4303 . . 3 ((𝑃 pSyl 𝐺) ≠ ∅ ↔ ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺))
86, 7sylib 220 . 2 (𝜑 → ∃𝑘 𝑘 ∈ (𝑃 pSyl 𝐺))
9 sylow3.n . . . 4 𝑁 = (♯‘(𝑃 pSyl 𝐺))
101adantr 483 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝐺 ∈ Grp)
112adantr 483 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
123adantr 483 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑃 ∈ ℙ)
13 eqid 2820 . . . . 5 (+g𝐺) = (+g𝐺)
14 eqid 2820 . . . . 5 (-g𝐺) = (-g𝐺)
15 oveq2 7157 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑎(+g𝐺)𝑐) = (𝑎(+g𝐺)𝑧))
1615oveq1d 7164 . . . . . . . . 9 (𝑐 = 𝑧 → ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎) = ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎))
1716cbvmptv 5162 . . . . . . . 8 (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎))
18 oveq1 7156 . . . . . . . . . 10 (𝑎 = 𝑥 → (𝑎(+g𝐺)𝑧) = (𝑥(+g𝐺)𝑧))
19 id 22 . . . . . . . . . 10 (𝑎 = 𝑥𝑎 = 𝑥)
2018, 19oveq12d 7167 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎) = ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥))
2120mpteq2dv 5155 . . . . . . . 8 (𝑎 = 𝑥 → (𝑧𝑏 ↦ ((𝑎(+g𝐺)𝑧)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2217, 21syl5eq 2867 . . . . . . 7 (𝑎 = 𝑥 → (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2322rneqd 5801 . . . . . 6 (𝑎 = 𝑥 → ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)) = ran (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
24 mpteq1 5147 . . . . . . 7 (𝑏 = 𝑦 → (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)) = (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2524rneqd 5801 . . . . . 6 (𝑏 = 𝑦 → ran (𝑧𝑏 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)) = ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
2623, 25cbvmpov 7242 . . . . 5 (𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎))) = (𝑥𝑋, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
27 simpr 487 . . . . 5 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑘 ∈ (𝑃 pSyl 𝐺))
28 eqid 2820 . . . . 5 {𝑢𝑋 ∣ (𝑢(𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)))𝑘) = 𝑘} = {𝑢𝑋 ∣ (𝑢(𝑎𝑋, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎)))𝑘) = 𝑘}
29 eqid 2820 . . . . 5 {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑘)} = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑘 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑘)}
304, 10, 11, 12, 13, 14, 26, 27, 28, 29sylow3lem4 18748 . . . 4 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (♯‘(𝑃 pSyl 𝐺)) ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
319, 30eqbrtrid 5094 . . 3 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → 𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
329oveq1i 7159 . . . 4 (𝑁 mod 𝑃) = ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃)
3323, 25cbvmpov 7242 . . . . 5 (𝑎𝑘, 𝑏 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑐𝑏 ↦ ((𝑎(+g𝐺)𝑐)(-g𝐺)𝑎))) = (𝑥𝑘, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥(+g𝐺)𝑧)(-g𝐺)𝑥)))
34 eqid 2820 . . . . 5 {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑠)} = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥(+g𝐺)𝑦) ∈ 𝑠 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑠)}
354, 10, 11, 12, 13, 14, 27, 33, 34sylow3lem6 18750 . . . 4 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1)
3632, 35syl5eq 2867 . . 3 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 mod 𝑃) = 1)
3731, 36jca 514 . 2 ((𝜑𝑘 ∈ (𝑃 pSyl 𝐺)) → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))
388, 37exlimddv 1935 1 (𝜑 → (𝑁 ∥ ((♯‘𝑋) / (𝑃↑(𝑃 pCnt (♯‘𝑋)))) ∧ (𝑁 mod 𝑃) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wex 1779  wcel 2113  wne 3015  wral 3137  {crab 3141  c0 4284   class class class wbr 5059  cmpt 5139  ran crn 5549  cfv 6348  (class class class)co 7149  cmpo 7151  Fincfn 8502  1c1 10531   / cdiv 11290   mod cmo 13234  cexp 13426  chash 13687  cdvds 15600  cprime 16008   pCnt cpc 16166  Basecbs 16476  +gcplusg 16558  Grpcgrp 18096  -gcsg 18098   pSyl cslw 18648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-disj 5025  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-omul 8100  df-er 8282  df-ec 8284  df-qs 8288  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-sup 8899  df-inf 8900  df-oi 8967  df-dju 9323  df-card 9361  df-acn 9364  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-fz 12890  df-fzo 13031  df-fl 13159  df-mod 13235  df-seq 13367  df-exp 13427  df-fac 13631  df-bc 13660  df-hash 13688  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-dvds 15601  df-gcd 15837  df-prm 16009  df-pc 16167  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-0g 16708  df-mgm 17845  df-sgrp 17894  df-mnd 17905  df-submnd 17950  df-grp 18099  df-minusg 18100  df-sbg 18101  df-mulg 18218  df-subg 18269  df-nsg 18270  df-eqg 18271  df-ghm 18349  df-ga 18413  df-od 18649  df-pgp 18651  df-slw 18652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator