Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocnv Structured version   Visualization version   GIF version

Theorem tendocnv 38039
Description: Converse of a trace-preserving endomorphism value. (Contributed by NM, 7-Apr-2014.)
Hypotheses
Ref Expression
tendosp.h 𝐻 = (LHyp‘𝐾)
tendosp.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendosp.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendocnv (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) = (𝑆𝐹))

Proof of Theorem tendocnv
StepHypRef Expression
1 simp1 1128 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 tendosp.h . . . . . 6 𝐻 = (LHyp‘𝐾)
3 tendosp.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 tendosp.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
52, 3, 4tendocl 37785 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
6 eqid 2821 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
76, 2, 3ltrn1o 37142 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
81, 5, 7syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
9 f1ococnv1 6637 . . . 4 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
108, 9syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
1110coeq1d 5726 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)))
12 simp2 1129 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝑆𝐸)
136, 2, 4tendoid 37791 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆‘( I ↾ (Base‘𝐾))) = ( I ↾ (Base‘𝐾)))
141, 12, 13syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆‘( I ↾ (Base‘𝐾))) = ( I ↾ (Base‘𝐾)))
156, 2, 3ltrn1o 37142 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16153adant2 1123 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
17 f1ococnv2 6635 . . . . . . . . 9 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1816, 17syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝐹𝐹) = ( I ↾ (Base‘𝐾)))
1918fveq2d 6668 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆‘(𝐹𝐹)) = (𝑆‘( I ↾ (Base‘𝐾))))
20 f1ococnv2 6635 . . . . . . . 8 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
218, 20syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ( I ↾ (Base‘𝐾)))
2214, 19, 213eqtr4rd 2867 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = (𝑆‘(𝐹𝐹)))
23 simp3 1130 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹𝑇)
242, 3ltrncnv 37164 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
25243adant2 1123 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → 𝐹𝑇)
262, 3, 4tendospdi1 38038 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝐹𝑇𝐹𝑇)) → (𝑆‘(𝐹𝐹)) = ((𝑆𝐹) ∘ (𝑆𝐹)))
271, 12, 23, 25, 26syl13anc 1364 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆‘(𝐹𝐹)) = ((𝑆𝐹) ∘ (𝑆𝐹)))
2822, 27eqtrd 2856 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ (𝑆𝐹)) = ((𝑆𝐹) ∘ (𝑆𝐹)))
2928coeq2d 5727 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹))) = ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹))))
30 coass 6112 . . . 4 (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹)))
31 coass 6112 . . . 4 (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = ((𝑆𝐹) ∘ ((𝑆𝐹) ∘ (𝑆𝐹)))
3229, 30, 313eqtr4g 2881 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)))
3310coeq1d 5726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)))
342, 3, 4tendocl 37785 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
3525, 34syld3an3 1401 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
366, 2, 3ltrn1o 37142 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
371, 35, 36syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
38 f1of 6609 . . . 4 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾))
39 fcoi2 6547 . . . 4 ((𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4037, 38, 393syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4132, 33, 403eqtrd 2860 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (((𝑆𝐹) ∘ (𝑆𝐹)) ∘ (𝑆𝐹)) = (𝑆𝐹))
422, 3ltrncnv 37164 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹) ∈ 𝑇)
431, 5, 42syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) ∈ 𝑇)
446, 2, 3ltrn1o 37142 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐹) ∈ 𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
451, 43, 44syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾))
46 f1of 6609 . . 3 ((𝑆𝐹):(Base‘𝐾)–1-1-onto→(Base‘𝐾) → (𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾))
47 fcoi2 6547 . . 3 ((𝑆𝐹):(Base‘𝐾)⟶(Base‘𝐾) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4845, 46, 473syl 18 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (( I ↾ (Base‘𝐾)) ∘ (𝑆𝐹)) = (𝑆𝐹))
4911, 41, 483eqtr3rd 2865 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝐹𝑇) → (𝑆𝐹) = (𝑆𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105   I cid 5453  ccnv 5548  cres 5551  ccom 5553  wf 6345  1-1-ontowf1o 6348  cfv 6349  Basecbs 16473  HLchlt 36368  LHypclh 37002  LTrncltrn 37119  TEndoctendo 37770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-map 8398  df-proset 17528  df-poset 17546  df-plt 17558  df-lub 17574  df-glb 17575  df-join 17576  df-meet 17577  df-p0 17639  df-p1 17640  df-lat 17646  df-clat 17708  df-oposet 36194  df-ol 36196  df-oml 36197  df-covers 36284  df-ats 36285  df-atl 36316  df-cvlat 36340  df-hlat 36369  df-lhyp 37006  df-laut 37007  df-ldil 37122  df-ltrn 37123  df-trl 37177  df-tendo 37773
This theorem is referenced by:  tendospcanN  38041  dihjatcclem4  38439
  Copyright terms: Public domain W3C validator