Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfvlem1 Structured version   Visualization version   GIF version

Theorem xlimpnfvlem1 42137
Description: Lemma for xlimpnfv 42139: the "only if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfvlem1.m (𝜑𝑀 ∈ ℤ)
xlimpnfvlem1.z 𝑍 = (ℤ𝑀)
xlimpnfvlem1.f (𝜑𝐹:𝑍⟶ℝ*)
xlimpnfvlem1.c (𝜑𝐹~~>*+∞)
xlimpnfvlem1.x (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
xlimpnfvlem1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘))
Distinct variable groups:   𝑗,𝐹,𝑘   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem xlimpnfvlem1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 iocpnfordt 21823 . . . . . 6 (𝑋(,]+∞) ∈ (ordTop‘ ≤ )
21a1i 11 . . . . 5 (𝜑 → (𝑋(,]+∞) ∈ (ordTop‘ ≤ ))
3 xlimpnfvlem1.c . . . . . . . 8 (𝜑𝐹~~>*+∞)
4 df-xlim 42120 . . . . . . . . 9 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
54breqi 5072 . . . . . . . 8 (𝐹~~>*+∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞)
63, 5sylib 220 . . . . . . 7 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞)
7 nfcv 2977 . . . . . . . 8 𝑘𝐹
8 letopon 21813 . . . . . . . . 9 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
98a1i 11 . . . . . . . 8 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
107, 9lmbr3 42048 . . . . . . 7 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞ ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ +∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
116, 10mpbid 234 . . . . . 6 (𝜑 → (𝐹 ∈ (ℝ*pm ℂ) ∧ +∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1211simp3d 1140 . . . . 5 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
132, 12jca 514 . . . 4 (𝜑 → ((𝑋(,]+∞) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
14 xlimpnfvlem1.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
1514rexrd 10691 . . . . 5 (𝜑𝑋 ∈ ℝ*)
1611simp2d 1139 . . . . 5 (𝜑 → +∞ ∈ ℝ*)
1714ltpnfd 12517 . . . . 5 (𝜑𝑋 < +∞)
18 ubioc1 12791 . . . . 5 ((𝑋 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑋 < +∞) → +∞ ∈ (𝑋(,]+∞))
1915, 16, 17, 18syl3anc 1367 . . . 4 (𝜑 → +∞ ∈ (𝑋(,]+∞))
20 eleq2 2901 . . . . . 6 (𝑢 = (𝑋(,]+∞) → (+∞ ∈ 𝑢 ↔ +∞ ∈ (𝑋(,]+∞)))
21 eleq2 2901 . . . . . . . . 9 (𝑢 = (𝑋(,]+∞) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (𝑋(,]+∞)))
2221anbi2d 630 . . . . . . . 8 (𝑢 = (𝑋(,]+∞) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))))
2322ralbidv 3197 . . . . . . 7 (𝑢 = (𝑋(,]+∞) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))))
2423rexbidv 3297 . . . . . 6 (𝑢 = (𝑋(,]+∞) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))))
2520, 24imbi12d 347 . . . . 5 (𝑢 = (𝑋(,]+∞) → ((+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (+∞ ∈ (𝑋(,]+∞) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)))))
2625rspcva 3621 . . . 4 (((𝑋(,]+∞) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → (+∞ ∈ (𝑋(,]+∞) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))))
2713, 19, 26sylc 65 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)))
28 nfv 1915 . . . 4 𝑗𝜑
29 nfv 1915 . . . . . 6 𝑘𝜑
3015adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → 𝑋 ∈ ℝ*)
31 xlimpnfvlem1.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ*)
3231ffdmd 6537 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℝ*)
3332ffvelrnda 6851 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom 𝐹) → (𝐹𝑘) ∈ ℝ*)
3433adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → (𝐹𝑘) ∈ ℝ*)
3516adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → +∞ ∈ ℝ*)
36 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → (𝐹𝑘) ∈ (𝑋(,]+∞))
3730, 35, 36iocgtlbd 41867 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → 𝑋 < (𝐹𝑘))
3830, 34, 37xrltled 12544 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → 𝑋 ≤ (𝐹𝑘))
3938ex 415 . . . . . . 7 (𝜑 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → 𝑋 ≤ (𝐹𝑘)))
4039adantr 483 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → 𝑋 ≤ (𝐹𝑘)))
4129, 40ralimda 41426 . . . . 5 (𝜑 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘)))
4241a1d 25 . . . 4 (𝜑 → (𝑗 ∈ ℤ → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘))))
4328, 42reximdai 3311 . . 3 (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘)))
4427, 43mpd 15 . 2 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘))
45 xlimpnfvlem1.m . . 3 (𝜑𝑀 ∈ ℤ)
46 xlimpnfvlem1.z . . . 4 𝑍 = (ℤ𝑀)
4746rexuz3 14708 . . 3 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘)))
4845, 47syl 17 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘)))
4944, 48mpbird 259 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139   class class class wbr 5066  dom cdm 5555  wf 6351  cfv 6355  (class class class)co 7156  pm cpm 8407  cc 10535  cr 10536  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  cz 11982  cuz 12244  (,]cioc 12740  ordTopcordt 16772  TopOnctopon 21518  𝑡clm 21834  ~~>*clsxlim 42119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-z 11983  df-uz 12245  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-topgen 16717  df-ordt 16774  df-ps 17810  df-tsr 17811  df-top 21502  df-topon 21519  df-bases 21554  df-lm 21837  df-xlim 42120
This theorem is referenced by:  xlimpnfv  42139
  Copyright terms: Public domain W3C validator