MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltnr Structured version   Visualization version   GIF version

Theorem xrltnr 12515
Description: The extended real 'less than' is irreflexive. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
xrltnr (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)

Proof of Theorem xrltnr
StepHypRef Expression
1 elxr 12512 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 ltnr 10735 . . 3 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
3 pnfnre 10682 . . . . . . . . . 10 +∞ ∉ ℝ
43neli 3125 . . . . . . . . 9 ¬ +∞ ∈ ℝ
54intnan 489 . . . . . . . 8 ¬ (+∞ ∈ ℝ ∧ +∞ ∈ ℝ)
65intnanr 490 . . . . . . 7 ¬ ((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞)
7 pnfnemnf 10696 . . . . . . . . 9 +∞ ≠ -∞
87neii 3018 . . . . . . . 8 ¬ +∞ = -∞
98intnanr 490 . . . . . . 7 ¬ (+∞ = -∞ ∧ +∞ = +∞)
106, 9pm3.2ni 877 . . . . . 6 ¬ (((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞))
114intnanr 490 . . . . . . 7 ¬ (+∞ ∈ ℝ ∧ +∞ = +∞)
124intnan 489 . . . . . . 7 ¬ (+∞ = -∞ ∧ +∞ ∈ ℝ)
1311, 12pm3.2ni 877 . . . . . 6 ¬ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ))
1410, 13pm3.2ni 877 . . . . 5 ¬ ((((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞)) ∨ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ)))
15 pnfxr 10695 . . . . . 6 +∞ ∈ ℝ*
16 ltxr 12511 . . . . . 6 ((+∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (+∞ < +∞ ↔ ((((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞)) ∨ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ)))))
1715, 15, 16mp2an 690 . . . . 5 (+∞ < +∞ ↔ ((((+∞ ∈ ℝ ∧ +∞ ∈ ℝ) ∧ +∞ < +∞) ∨ (+∞ = -∞ ∧ +∞ = +∞)) ∨ ((+∞ ∈ ℝ ∧ +∞ = +∞) ∨ (+∞ = -∞ ∧ +∞ ∈ ℝ))))
1814, 17mtbir 325 . . . 4 ¬ +∞ < +∞
19 breq12 5071 . . . . 5 ((𝐴 = +∞ ∧ 𝐴 = +∞) → (𝐴 < 𝐴 ↔ +∞ < +∞))
2019anidms 569 . . . 4 (𝐴 = +∞ → (𝐴 < 𝐴 ↔ +∞ < +∞))
2118, 20mtbiri 329 . . 3 (𝐴 = +∞ → ¬ 𝐴 < 𝐴)
22 mnfnre 10684 . . . . . . . . . 10 -∞ ∉ ℝ
2322neli 3125 . . . . . . . . 9 ¬ -∞ ∈ ℝ
2423intnan 489 . . . . . . . 8 ¬ (-∞ ∈ ℝ ∧ -∞ ∈ ℝ)
2524intnanr 490 . . . . . . 7 ¬ ((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞)
267nesymi 3073 . . . . . . . 8 ¬ -∞ = +∞
2726intnan 489 . . . . . . 7 ¬ (-∞ = -∞ ∧ -∞ = +∞)
2825, 27pm3.2ni 877 . . . . . 6 ¬ (((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞))
2923intnanr 490 . . . . . . 7 ¬ (-∞ ∈ ℝ ∧ -∞ = +∞)
3023intnan 489 . . . . . . 7 ¬ (-∞ = -∞ ∧ -∞ ∈ ℝ)
3129, 30pm3.2ni 877 . . . . . 6 ¬ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ))
3228, 31pm3.2ni 877 . . . . 5 ¬ ((((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ)))
33 mnfxr 10698 . . . . . 6 -∞ ∈ ℝ*
34 ltxr 12511 . . . . . 6 ((-∞ ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-∞ < -∞ ↔ ((((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ)))))
3533, 33, 34mp2an 690 . . . . 5 (-∞ < -∞ ↔ ((((-∞ ∈ ℝ ∧ -∞ ∈ ℝ) ∧ -∞ < -∞) ∨ (-∞ = -∞ ∧ -∞ = +∞)) ∨ ((-∞ ∈ ℝ ∧ -∞ = +∞) ∨ (-∞ = -∞ ∧ -∞ ∈ ℝ))))
3632, 35mtbir 325 . . . 4 ¬ -∞ < -∞
37 breq12 5071 . . . . 5 ((𝐴 = -∞ ∧ 𝐴 = -∞) → (𝐴 < 𝐴 ↔ -∞ < -∞))
3837anidms 569 . . . 4 (𝐴 = -∞ → (𝐴 < 𝐴 ↔ -∞ < -∞))
3936, 38mtbiri 329 . . 3 (𝐴 = -∞ → ¬ 𝐴 < 𝐴)
402, 21, 393jaoi 1423 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → ¬ 𝐴 < 𝐴)
411, 40sylbi 219 1 (𝐴 ∈ ℝ* → ¬ 𝐴 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082   = wceq 1537  wcel 2114   class class class wbr 5066  cr 10536   < cltrr 10541  +∞cpnf 10672  -∞cmnf 10673  *cxr 10674   < clt 10675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680
This theorem is referenced by:  xrltnsym  12531  xrlttri  12533  nltpnft  12558  ngtmnft  12560  xrsupsslem  12701  xrinfmsslem  12702  xrub  12706  lbioo  12770  ubioo  12771  topnfbey  28248  lbioc  41809  icoub  41822  iccpartnel  43618
  Copyright terms: Public domain W3C validator