MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsupsslem Structured version   Visualization version   GIF version

Theorem xrsupsslem 12080
Description: Lemma for xrsupss 12082. (Contributed by NM, 25-Oct-2005.)
Assertion
Ref Expression
xrsupsslem ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrsupsslem
StepHypRef Expression
1 raleq 3127 . . . . . 6 (𝐴 = ∅ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦))
2 rexeq 3128 . . . . . . . 8 (𝐴 = ∅ → (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
32imbi2d 330 . . . . . . 7 (𝐴 = ∅ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
43ralbidv 2980 . . . . . 6 (𝐴 = ∅ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
51, 4anbi12d 746 . . . . 5 (𝐴 = ∅ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
65rexbidv 3045 . . . 4 (𝐴 = ∅ → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
7 sup3 10924 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8 rexr 10029 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
98anim1i 591 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑥 ∈ ℝ* ∧ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
109reximi2 3004 . . . . . . . 8 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
117, 10syl 17 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
12 elxr 11894 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
13 simpr 477 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
14 pnfnlt 11906 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ* → ¬ +∞ < 𝑥)
1514adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = +∞) → ¬ +∞ < 𝑥)
16 breq1 4616 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = +∞ → (𝑦 < 𝑥 ↔ +∞ < 𝑥))
1716notbid 308 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥))
1817adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ*𝑦 = +∞) → (¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥))
1915, 18mpbird 247 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 = +∞) → ¬ 𝑦 < 𝑥)
2019pm2.21d 118 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 = +∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
2120ex 450 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → (𝑦 = +∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2221ad2antlr 762 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 = +∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
23 ssel 3577 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ⊆ ℝ → (𝑧𝐴𝑧 ∈ ℝ))
24 mnflt 11901 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 ∈ ℝ → -∞ < 𝑧)
2523, 24syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 ⊆ ℝ → (𝑧𝐴 → -∞ < 𝑧))
2625ancld 575 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ⊆ ℝ → (𝑧𝐴 → (𝑧𝐴 ∧ -∞ < 𝑧)))
2726eximdv 1843 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ ℝ → (∃𝑧 𝑧𝐴 → ∃𝑧(𝑧𝐴 ∧ -∞ < 𝑧)))
28 n0 3907 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
29 df-rex 2913 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑧𝐴 -∞ < 𝑧 ↔ ∃𝑧(𝑧𝐴 ∧ -∞ < 𝑧))
3027, 28, 293imtr4g 285 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → ∃𝑧𝐴 -∞ < 𝑧))
3130imp 445 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑧𝐴 -∞ < 𝑧)
3231a1d 25 . . . . . . . . . . . . . . . . . 18 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧))
3332ad2antrr 761 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧))
34 breq1 4616 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (𝑦 < 𝑥 ↔ -∞ < 𝑥))
35 breq1 4616 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = -∞ → (𝑦 < 𝑧 ↔ -∞ < 𝑧))
3635rexbidv 3045 . . . . . . . . . . . . . . . . . . 19 (𝑦 = -∞ → (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧𝐴 -∞ < 𝑧))
3734, 36imbi12d 334 . . . . . . . . . . . . . . . . . 18 (𝑦 = -∞ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧)))
3837adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (-∞ < 𝑥 → ∃𝑧𝐴 -∞ < 𝑧)))
3933, 38mpbird 247 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ 𝑦 = -∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))
4039ex 450 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (𝑦 = -∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4140adantr 481 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 = -∞ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4213, 22, 413jaod 1389 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4312, 42syl5bi 232 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) ∧ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))) → (𝑦 ∈ ℝ* → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4443ex 450 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → (𝑦 ∈ ℝ* → (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4544ralimdv2 2955 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
4645anim2d 588 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ*) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4746reximdva 3011 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
48473adant3 1079 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
4911, 48mpd 15 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
50493expa 1262 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
51 ralnex 2986 . . . . . . . . 9 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
52 rexnal 2989 . . . . . . . . . . . 12 (∃𝑦𝐴 ¬ 𝑦𝑥 ↔ ¬ ∀𝑦𝐴 𝑦𝑥)
53 ssel2 3578 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
54 letric 10081 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝑥𝑥𝑦))
5554ord 392 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (¬ 𝑦𝑥𝑥𝑦))
5653, 55sylan 488 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (¬ 𝑦𝑥𝑥𝑦))
5756an32s 845 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (¬ 𝑦𝑥𝑥𝑦))
5857reximdva 3011 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 ¬ 𝑦𝑥 → ∃𝑦𝐴 𝑥𝑦))
5952, 58syl5bir 233 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑦𝑥 → ∃𝑦𝐴 𝑥𝑦))
6059ralimdva 2956 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
6160imp 445 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
6251, 61sylan2br 493 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦)
63 breq2 4617 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
6463cbvrexv 3160 . . . . . . . . 9 (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑧𝐴 𝑥𝑧)
6564ralbii 2974 . . . . . . . 8 (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧)
6662, 65sylib 208 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧)
67 pnfxr 10036 . . . . . . . 8 +∞ ∈ ℝ*
68 ssel 3577 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
69 rexr 10029 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
70 pnfnlt 11906 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
7169, 70syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → ¬ +∞ < 𝑦)
7268, 71syl6 35 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (𝑦𝐴 → ¬ +∞ < 𝑦))
7372ralrimiv 2959 . . . . . . . . . 10 (𝐴 ⊆ ℝ → ∀𝑦𝐴 ¬ +∞ < 𝑦)
7473adantr 481 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∀𝑦𝐴 ¬ +∞ < 𝑦)
75 peano2re 10153 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
76 breq1 4616 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑦 + 1) → (𝑥𝑧 ↔ (𝑦 + 1) ≤ 𝑧))
7776rexbidv 3045 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑦 + 1) → (∃𝑧𝐴 𝑥𝑧 ↔ ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧))
7877rspcva 3293 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
7978adantrr 752 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 + 1) ∈ ℝ ∧ (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ)) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
8079ancoms 469 . . . . . . . . . . . . . . . . . . 19 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ (𝑦 + 1) ∈ ℝ) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
8175, 80sylan2 491 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧)
82 ssel2 3578 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
83 ltp1 10805 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
8483adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 < (𝑦 + 1))
8575ancli 573 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℝ → (𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ))
86 ltletr 10073 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
87863expa 1262 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑦 ∈ ℝ ∧ (𝑦 + 1) ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
8885, 87sylan 488 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 < (𝑦 + 1) ∧ (𝑦 + 1) ≤ 𝑧) → 𝑦 < 𝑧))
8984, 88mpand 710 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9089ancoms 469 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9182, 90sylan 488 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ 𝑧𝐴) ∧ 𝑦 ∈ ℝ) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9291an32s 845 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑦 + 1) ≤ 𝑧𝑦 < 𝑧))
9392reximdva 3011 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧 → ∃𝑧𝐴 𝑦 < 𝑧))
9493adantll 749 . . . . . . . . . . . . . . . . . 18 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → (∃𝑧𝐴 (𝑦 + 1) ≤ 𝑧 → ∃𝑧𝐴 𝑦 < 𝑧))
9581, 94mpd 15 . . . . . . . . . . . . . . . . 17 (((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) ∧ 𝑦 ∈ ℝ) → ∃𝑧𝐴 𝑦 < 𝑧)
9695exp31 629 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑦 < 𝑧)))
9796a1dd 50 . . . . . . . . . . . . . . 15 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → (𝑦 ∈ ℝ → ∃𝑧𝐴 𝑦 < 𝑧))))
9897com4r 94 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
99 xrltnr 11897 . . . . . . . . . . . . . . . . . 18 (+∞ ∈ ℝ* → ¬ +∞ < +∞)
10067, 99ax-mp 5 . . . . . . . . . . . . . . . . 17 ¬ +∞ < +∞
101 breq1 4616 . . . . . . . . . . . . . . . . 17 (𝑦 = +∞ → (𝑦 < +∞ ↔ +∞ < +∞))
102100, 101mtbiri 317 . . . . . . . . . . . . . . . 16 (𝑦 = +∞ → ¬ 𝑦 < +∞)
103102pm2.21d 118 . . . . . . . . . . . . . . 15 (𝑦 = +∞ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
1041032a1d 26 . . . . . . . . . . . . . 14 (𝑦 = +∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
105 0re 9984 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
106 breq1 4616 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (𝑥𝑧 ↔ 0 ≤ 𝑧))
107106rexbidv 3045 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (∃𝑧𝐴 𝑥𝑧 ↔ ∃𝑧𝐴 0 ≤ 𝑧))
108107rspcva 3293 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑧𝐴 0 ≤ 𝑧)
109105, 108mpan 705 . . . . . . . . . . . . . . . . . 18 (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → ∃𝑧𝐴 0 ≤ 𝑧)
11082, 24syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → -∞ < 𝑧)
111110a1d 25 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → (0 ≤ 𝑧 → -∞ < 𝑧))
112111reximdva 3011 . . . . . . . . . . . . . . . . . 18 (𝐴 ⊆ ℝ → (∃𝑧𝐴 0 ≤ 𝑧 → ∃𝑧𝐴 -∞ < 𝑧))
113109, 112mpan9 486 . . . . . . . . . . . . . . . . 17 ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → ∃𝑧𝐴 -∞ < 𝑧)
114113, 36syl5ibr 236 . . . . . . . . . . . . . . . 16 (𝑦 = -∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → ∃𝑧𝐴 𝑦 < 𝑧))
115114a1dd 50 . . . . . . . . . . . . . . 15 (𝑦 = -∞ → ((∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧𝐴 ⊆ ℝ) → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
116115expd 452 . . . . . . . . . . . . . 14 (𝑦 = -∞ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
11798, 104, 1163jaoi 1388 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞) → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
11812, 117sylbi 207 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝐴 ⊆ ℝ → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
119118com13 88 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧 → (𝑦 ∈ ℝ* → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
120119imp 445 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → (𝑦 ∈ ℝ* → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
121120ralrimiv 2959 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
12274, 121jca 554 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
123 breq1 4616 . . . . . . . . . . . 12 (𝑥 = +∞ → (𝑥 < 𝑦 ↔ +∞ < 𝑦))
124123notbid 308 . . . . . . . . . . 11 (𝑥 = +∞ → (¬ 𝑥 < 𝑦 ↔ ¬ +∞ < 𝑦))
125124ralbidv 2980 . . . . . . . . . 10 (𝑥 = +∞ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ +∞ < 𝑦))
126 breq2 4617 . . . . . . . . . . . 12 (𝑥 = +∞ → (𝑦 < 𝑥𝑦 < +∞))
127126imbi1d 331 . . . . . . . . . . 11 (𝑥 = +∞ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
128127ralbidv 2980 . . . . . . . . . 10 (𝑥 = +∞ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
129125, 128anbi12d 746 . . . . . . . . 9 (𝑥 = +∞ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))))
130129rspcev 3295 . . . . . . . 8 ((+∞ ∈ ℝ* ∧ (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13167, 122, 130sylancr 694 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑧𝐴 𝑥𝑧) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13266, 131syldan 487 . . . . . 6 ((𝐴 ⊆ ℝ ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
133132adantlr 750 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
13450, 133pm2.61dan 831 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
135 mnfxr 10040 . . . . . 6 -∞ ∈ ℝ*
136 ral0 4048 . . . . . . 7 𝑦 ∈ ∅ ¬ -∞ < 𝑦
137 nltmnf 11907 . . . . . . . . 9 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
138137pm2.21d 118 . . . . . . . 8 (𝑦 ∈ ℝ* → (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
139138rgen 2917 . . . . . . 7 𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)
140136, 139pm3.2i 471 . . . . . 6 (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
141 breq1 4616 . . . . . . . . . 10 (𝑥 = -∞ → (𝑥 < 𝑦 ↔ -∞ < 𝑦))
142141notbid 308 . . . . . . . . 9 (𝑥 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ -∞ < 𝑦))
143142ralbidv 2980 . . . . . . . 8 (𝑥 = -∞ → (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ↔ ∀𝑦 ∈ ∅ ¬ -∞ < 𝑦))
144 breq2 4617 . . . . . . . . . 10 (𝑥 = -∞ → (𝑦 < 𝑥𝑦 < -∞))
145144imbi1d 331 . . . . . . . . 9 (𝑥 = -∞ → ((𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧) ↔ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
146145ralbidv 2980 . . . . . . . 8 (𝑥 = -∞ → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
147143, 146anbi12d 746 . . . . . . 7 (𝑥 = -∞ → ((∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)) ↔ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))))
148147rspcev 3295 . . . . . 6 ((-∞ ∈ ℝ* ∧ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
149135, 140, 148mp2an 707 . . . . 5 𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
150149a1i 11 . . . 4 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ ∅ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)))
1516, 134, 150pm2.61ne 2875 . . 3 (𝐴 ⊆ ℝ → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
152151adantl 482 . 2 ((𝐴 ⊆ ℝ*𝐴 ⊆ ℝ) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
153 ssel 3577 . . . . . 6 (𝐴 ⊆ ℝ* → (𝑦𝐴𝑦 ∈ ℝ*))
154153, 70syl6 35 . . . . 5 (𝐴 ⊆ ℝ* → (𝑦𝐴 → ¬ +∞ < 𝑦))
155154ralrimiv 2959 . . . 4 (𝐴 ⊆ ℝ* → ∀𝑦𝐴 ¬ +∞ < 𝑦)
156 breq2 4617 . . . . . . 7 (𝑧 = +∞ → (𝑦 < 𝑧𝑦 < +∞))
157156rspcev 3295 . . . . . 6 ((+∞ ∈ 𝐴𝑦 < +∞) → ∃𝑧𝐴 𝑦 < 𝑧)
158157ex 450 . . . . 5 (+∞ ∈ 𝐴 → (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
159158ralrimivw 2961 . . . 4 (+∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧))
160155, 159anim12i 589 . . 3 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → (∀𝑦𝐴 ¬ +∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < +∞ → ∃𝑧𝐴 𝑦 < 𝑧)))
16167, 160, 130sylancr 694 . 2 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
162152, 161jaodan 825 1 ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3o 1035  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  wss 3555  c0 3891   class class class wbr 4613  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881   + caddc 9883  +∞cpnf 10015  -∞cmnf 10016  *cxr 10017   < clt 10018  cle 10019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213
This theorem is referenced by:  xrsupss  12082
  Copyright terms: Public domain W3C validator