![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zofldiv2ALTV | Structured version Visualization version GIF version |
Description: The floor of an odd numer divided by 2 is equal to the odd number first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) (Revised by AV, 18-Jun-2020.) |
Ref | Expression |
---|---|
zofldiv2ALTV | ⊢ (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddz 41869 | . . . . 5 ⊢ (𝑁 ∈ Odd → 𝑁 ∈ ℤ) | |
2 | 1 | zcnd 11521 | . . . 4 ⊢ (𝑁 ∈ Odd → 𝑁 ∈ ℂ) |
3 | npcan1 10493 | . . . . . . 7 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) | |
4 | 3 | eqcomd 2657 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → 𝑁 = ((𝑁 − 1) + 1)) |
5 | 4 | oveq1d 6705 | . . . . 5 ⊢ (𝑁 ∈ ℂ → (𝑁 / 2) = (((𝑁 − 1) + 1) / 2)) |
6 | peano2cnm 10385 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) | |
7 | 1cnd 10094 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → 1 ∈ ℂ) | |
8 | 2cnne0 11280 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
10 | divdir 10748 | . . . . . 6 ⊢ (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑁 − 1) + 1) / 2) = (((𝑁 − 1) / 2) + (1 / 2))) | |
11 | 6, 7, 9, 10 | syl3anc 1366 | . . . . 5 ⊢ (𝑁 ∈ ℂ → (((𝑁 − 1) + 1) / 2) = (((𝑁 − 1) / 2) + (1 / 2))) |
12 | 5, 11 | eqtrd 2685 | . . . 4 ⊢ (𝑁 ∈ ℂ → (𝑁 / 2) = (((𝑁 − 1) / 2) + (1 / 2))) |
13 | 2, 12 | syl 17 | . . 3 ⊢ (𝑁 ∈ Odd → (𝑁 / 2) = (((𝑁 − 1) / 2) + (1 / 2))) |
14 | 13 | fveq2d 6233 | . 2 ⊢ (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = (⌊‘(((𝑁 − 1) / 2) + (1 / 2)))) |
15 | halfge0 11287 | . . . 4 ⊢ 0 ≤ (1 / 2) | |
16 | halflt1 11288 | . . . 4 ⊢ (1 / 2) < 1 | |
17 | 15, 16 | pm3.2i 470 | . . 3 ⊢ (0 ≤ (1 / 2) ∧ (1 / 2) < 1) |
18 | oddm1div2z 41872 | . . . 4 ⊢ (𝑁 ∈ Odd → ((𝑁 − 1) / 2) ∈ ℤ) | |
19 | halfre 11284 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
20 | flbi2 12658 | . . . 4 ⊢ ((((𝑁 − 1) / 2) ∈ ℤ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2) ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) | |
21 | 18, 19, 20 | sylancl 695 | . . 3 ⊢ (𝑁 ∈ Odd → ((⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2) ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) |
22 | 17, 21 | mpbiri 248 | . 2 ⊢ (𝑁 ∈ Odd → (⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2)) |
23 | 14, 22 | eqtrd 2685 | 1 ⊢ (𝑁 ∈ Odd → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 ℝcr 9973 0cc0 9974 1c1 9975 + caddc 9977 < clt 10112 ≤ cle 10113 − cmin 10304 / cdiv 10722 2c2 11108 ℤcz 11415 ⌊cfl 12631 Odd codd 41863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-n0 11331 df-z 11416 df-uz 11726 df-fl 12633 df-odd 41865 |
This theorem is referenced by: oddflALTV 41900 |
Copyright terms: Public domain | W3C validator |