MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdir Structured version   Visualization version   GIF version

Theorem divdir 10748
Description: Distribution of division over addition. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
divdir ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))

Proof of Theorem divdir
StepHypRef Expression
1 simp1 1081 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐴 ∈ ℂ)
2 simp2 1082 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐵 ∈ ℂ)
3 reccl 10730 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (1 / 𝐶) ∈ ℂ)
433ad2ant3 1104 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (1 / 𝐶) ∈ ℂ)
51, 2, 4adddird 10103 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + 𝐵) · (1 / 𝐶)) = ((𝐴 · (1 / 𝐶)) + (𝐵 · (1 / 𝐶))))
61, 2addcld 10097 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 + 𝐵) ∈ ℂ)
7 simp3l 1109 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ∈ ℂ)
8 simp3r 1110 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → 𝐶 ≠ 0)
9 divrec 10739 . . 3 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 + 𝐵) · (1 / 𝐶)))
106, 7, 8, 9syl3anc 1366 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 + 𝐵) · (1 / 𝐶)))
11 divrec 10739 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶)))
121, 7, 8, 11syl3anc 1366 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶)))
13 divrec 10739 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
142, 7, 8, 13syl3anc 1366 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵 / 𝐶) = (𝐵 · (1 / 𝐶)))
1512, 14oveq12d 6708 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) + (𝐵 / 𝐶)) = ((𝐴 · (1 / 𝐶)) + (𝐵 · (1 / 𝐶))))
165, 10, 153eqtr4d 2695 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  (class class class)co 6690  cc 9972  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   / cdiv 10722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723
This theorem is referenced by:  muldivdir  10758  divsubdir  10759  divadddiv  10778  divdirzi  10815  divdird  10877  2halves  11298  halfaddsub  11303  zdivadd  11486  nneo  11499  rpnnen1lem5  11856  rpnnen1lem5OLD  11862  2tnp1ge0ge0  12670  fldiv  12699  modcyc  12745  mulsubdivbinom2  13086  crim  13899  efival  14926  flodddiv4  15184  divgcdcoprm0  15426  pythagtriplem17  15583  ptolemy  24293  relogbmul  24560  harmonicbnd4  24782  ppiub  24974  logfacrlim  24994  bposlem9  25062  2lgslem3a  25166  2lgslem3b  25167  2lgslem3c  25168  2lgslem3d  25169  chpchtlim  25213  mudivsum  25264  selberglem2  25280  pntrsumo1  25299  pntibndlem2  25325  pntibndlem3  25326  pntlemb  25331  dpfrac1  29727  dpfrac1OLD  29728  heiborlem6  33745  zofldiv2ALTV  41899  zofldiv2  42650  sinhpcosh  42809  onetansqsecsq  42830
  Copyright terms: Public domain W3C validator