ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasgrp2 Unicode version

Theorem imasgrp2 13004
Description: The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
imasgrp.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasgrp.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasgrp.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
imasgrp.f  |-  ( ph  ->  F : V -onto-> B
)
imasgrp.e  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .+  b )
)  =  ( F `
 ( p  .+  q ) ) ) )
imasgrp2.r  |-  ( ph  ->  R  e.  W )
imasgrp2.1  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x  .+  y )  e.  V
)
imasgrp2.2  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( F `  (
( x  .+  y
)  .+  z )
)  =  ( F `
 ( x  .+  ( y  .+  z
) ) ) )
imasgrp2.3  |-  ( ph  ->  .0.  e.  V )
imasgrp2.4  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  (  .0.  .+  x ) )  =  ( F `  x
) )
imasgrp2.5  |-  ( (
ph  /\  x  e.  V )  ->  N  e.  V )
imasgrp2.6  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  ( N  .+  x ) )  =  ( F `  .0.  ) )
Assertion
Ref Expression
imasgrp2  |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
Distinct variable groups:    q, p, x, B    N, p    a, b, p, q, x, y, z, ph    R, p, q    F, a, b, p, q, x, y, z    .+ , p, q, x, y    U, a, b, p, q, x, y, z    V, a, b, p, q, x, y, z    .0. , p, q, x
Allowed substitution hints:    B( y, z, a, b)    .+ ( z, a, b)    R( x, y, z, a, b)    N( x, y, z, q, a, b)    W( x, y, z, q, p, a, b)    .0. ( y, z, a, b)

Proof of Theorem imasgrp2
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasgrp.u . . . 4  |-  ( ph  ->  U  =  ( F 
"s  R ) )
2 imasgrp.v . . . 4  |-  ( ph  ->  V  =  ( Base `  R ) )
3 imasgrp.f . . . 4  |-  ( ph  ->  F : V -onto-> B
)
4 imasgrp2.r . . . 4  |-  ( ph  ->  R  e.  W )
51, 2, 3, 4imasbas 12745 . . 3  |-  ( ph  ->  B  =  ( Base `  U ) )
6 eqidd 2188 . . 3  |-  ( ph  ->  ( +g  `  U
)  =  ( +g  `  U ) )
7 imasgrp.e . . . . . 6  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a  .+  b )
)  =  ( F `
 ( p  .+  q ) ) ) )
8 imasgrp.p . . . . . . . . . 10  |-  ( ph  ->  .+  =  ( +g  `  R ) )
98oveqd 5905 . . . . . . . . 9  |-  ( ph  ->  ( a  .+  b
)  =  ( a ( +g  `  R
) b ) )
109fveq2d 5531 . . . . . . . 8  |-  ( ph  ->  ( F `  (
a  .+  b )
)  =  ( F `
 ( a ( +g  `  R ) b ) ) )
118oveqd 5905 . . . . . . . . 9  |-  ( ph  ->  ( p  .+  q
)  =  ( p ( +g  `  R
) q ) )
1211fveq2d 5531 . . . . . . . 8  |-  ( ph  ->  ( F `  (
p  .+  q )
)  =  ( F `
 ( p ( +g  `  R ) q ) ) )
1310, 12eqeq12d 2202 . . . . . . 7  |-  ( ph  ->  ( ( F `  ( a  .+  b
) )  =  ( F `  ( p 
.+  q ) )  <-> 
( F `  (
a ( +g  `  R
) b ) )  =  ( F `  ( p ( +g  `  R ) q ) ) ) )
14133ad2ant1 1019 . . . . . 6  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( ( F `  ( a  .+  b ) )  =  ( F `  (
p  .+  q )
)  <->  ( F `  ( a ( +g  `  R ) b ) )  =  ( F `
 ( p ( +g  `  R ) q ) ) ) )
157, 14sylibd 149 . . . . 5  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V )  /\  (
p  e.  V  /\  q  e.  V )
)  ->  ( (
( F `  a
)  =  ( F `
 p )  /\  ( F `  b )  =  ( F `  q ) )  -> 
( F `  (
a ( +g  `  R
) b ) )  =  ( F `  ( p ( +g  `  R ) q ) ) ) )
16 eqid 2187 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
17 eqid 2187 . . . . 5  |-  ( +g  `  U )  =  ( +g  `  U )
1811adantr 276 . . . . . 6  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .+  q
)  =  ( p ( +g  `  R
) q ) )
19 imasgrp2.1 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( x  .+  y )  e.  V
)
20193expb 1205 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( x  .+  y
)  e.  V )
2120caovclg 6040 . . . . . 6  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p  .+  q
)  e.  V )
2218, 21eqeltrrd 2265 . . . . 5  |-  ( (
ph  /\  ( p  e.  V  /\  q  e.  V ) )  -> 
( p ( +g  `  R ) q )  e.  V )
233, 15, 1, 2, 4, 16, 17, 22imasaddf 12757 . . . 4  |-  ( ph  ->  ( +g  `  U
) : ( B  X.  B ) --> B )
24 fovcdm 6030 . . . 4  |-  ( ( ( +g  `  U
) : ( B  X.  B ) --> B  /\  u  e.  B  /\  v  e.  B
)  ->  ( u
( +g  `  U ) v )  e.  B
)
2523, 24syl3an1 1281 . . 3  |-  ( (
ph  /\  u  e.  B  /\  v  e.  B
)  ->  ( u
( +g  `  U ) v )  e.  B
)
26 forn 5453 . . . . . . . . . 10  |-  ( F : V -onto-> B  ->  ran  F  =  B )
273, 26syl 14 . . . . . . . . 9  |-  ( ph  ->  ran  F  =  B )
2827eleq2d 2257 . . . . . . . 8  |-  ( ph  ->  ( u  e.  ran  F  <-> 
u  e.  B ) )
2927eleq2d 2257 . . . . . . . 8  |-  ( ph  ->  ( v  e.  ran  F  <-> 
v  e.  B ) )
3027eleq2d 2257 . . . . . . . 8  |-  ( ph  ->  ( w  e.  ran  F  <-> 
w  e.  B ) )
3128, 29, 303anbi123d 1322 . . . . . . 7  |-  ( ph  ->  ( ( u  e. 
ran  F  /\  v  e.  ran  F  /\  w  e.  ran  F )  <->  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) ) )
32 fofn 5452 . . . . . . . . 9  |-  ( F : V -onto-> B  ->  F  Fn  V )
333, 32syl 14 . . . . . . . 8  |-  ( ph  ->  F  Fn  V )
34 fvelrnb 5576 . . . . . . . . 9  |-  ( F  Fn  V  ->  (
u  e.  ran  F  <->  E. x  e.  V  ( F `  x )  =  u ) )
35 fvelrnb 5576 . . . . . . . . 9  |-  ( F  Fn  V  ->  (
v  e.  ran  F  <->  E. y  e.  V  ( F `  y )  =  v ) )
36 fvelrnb 5576 . . . . . . . . 9  |-  ( F  Fn  V  ->  (
w  e.  ran  F  <->  E. z  e.  V  ( F `  z )  =  w ) )
3734, 35, 363anbi123d 1322 . . . . . . . 8  |-  ( F  Fn  V  ->  (
( u  e.  ran  F  /\  v  e.  ran  F  /\  w  e.  ran  F )  <->  ( E. x  e.  V  ( F `  x )  =  u  /\  E. y  e.  V  ( F `  y )  =  v  /\  E. z  e.  V  ( F `  z )  =  w ) ) )
3833, 37syl 14 . . . . . . 7  |-  ( ph  ->  ( ( u  e. 
ran  F  /\  v  e.  ran  F  /\  w  e.  ran  F )  <->  ( E. x  e.  V  ( F `  x )  =  u  /\  E. y  e.  V  ( F `  y )  =  v  /\  E. z  e.  V  ( F `  z )  =  w ) ) )
3931, 38bitr3d 190 . . . . . 6  |-  ( ph  ->  ( ( u  e.  B  /\  v  e.  B  /\  w  e.  B )  <->  ( E. x  e.  V  ( F `  x )  =  u  /\  E. y  e.  V  ( F `  y )  =  v  /\  E. z  e.  V  ( F `  z )  =  w ) ) )
40 3reeanv 2658 . . . . . 6  |-  ( E. x  e.  V  E. y  e.  V  E. z  e.  V  (
( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  <->  ( E. x  e.  V  ( F `  x )  =  u  /\  E. y  e.  V  ( F `  y )  =  v  /\  E. z  e.  V  ( F `  z )  =  w ) )
4139, 40bitr4di 198 . . . . 5  |-  ( ph  ->  ( ( u  e.  B  /\  v  e.  B  /\  w  e.  B )  <->  E. x  e.  V  E. y  e.  V  E. z  e.  V  ( ( F `  x )  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w ) ) )
42 imasgrp2.2 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( F `  (
( x  .+  y
)  .+  z )
)  =  ( F `
 ( x  .+  ( y  .+  z
) ) ) )
438adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  .+  =  ( +g  `  R ) )
4443oveqd 5905 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( ( x  .+  y ) ( +g  `  R
) z ) )
4544fveq2d 5531 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( F `  (
( x  .+  y
)  .+  z )
)  =  ( F `
 ( ( x 
.+  y ) ( +g  `  R ) z ) ) )
4643oveqd 5905 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( x  .+  (
y  .+  z )
)  =  ( x ( +g  `  R
) ( y  .+  z ) ) )
4746fveq2d 5531 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( F `  (
x  .+  ( y  .+  z ) ) )  =  ( F `  ( x ( +g  `  R ) ( y 
.+  z ) ) ) )
4842, 45, 473eqtr3d 2228 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( F `  (
( x  .+  y
) ( +g  `  R
) z ) )  =  ( F `  ( x ( +g  `  R ) ( y 
.+  z ) ) ) )
49 simpl 109 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  ph )
50193adant3r3 1215 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( x  .+  y
)  e.  V )
51 simpr3 1006 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
z  e.  V )
523, 15, 1, 2, 4, 16, 17imasaddval 12756 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  .+  y )  e.  V  /\  z  e.  V
)  ->  ( ( F `  ( x  .+  y ) ) ( +g  `  U ) ( F `  z
) )  =  ( F `  ( ( x  .+  y ) ( +g  `  R
) z ) ) )
5349, 50, 51, 52syl3anc 1248 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( F `  ( x  .+  y ) ) ( +g  `  U
) ( F `  z ) )  =  ( F `  (
( x  .+  y
) ( +g  `  R
) z ) ) )
54 simpr1 1004 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  ->  x  e.  V )
5521caovclg 6040 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  V  /\  z  e.  V ) )  -> 
( y  .+  z
)  e.  V )
56553adantr1 1157 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( y  .+  z
)  e.  V )
573, 15, 1, 2, 4, 16, 17imasaddval 12756 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  V  /\  ( y  .+  z )  e.  V
)  ->  ( ( F `  x )
( +g  `  U ) ( F `  (
y  .+  z )
) )  =  ( F `  ( x ( +g  `  R
) ( y  .+  z ) ) ) )
5849, 54, 56, 57syl3anc 1248 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( F `  x ) ( +g  `  U ) ( F `
 ( y  .+  z ) ) )  =  ( F `  ( x ( +g  `  R ) ( y 
.+  z ) ) ) )
5948, 53, 583eqtr4d 2230 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( F `  ( x  .+  y ) ) ( +g  `  U
) ( F `  z ) )  =  ( ( F `  x ) ( +g  `  U ) ( F `
 ( y  .+  z ) ) ) )
603, 15, 1, 2, 4, 16, 17imasaddval 12756 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  V  /\  y  e.  V
)  ->  ( ( F `  x )
( +g  `  U ) ( F `  y
) )  =  ( F `  ( x ( +g  `  R
) y ) ) )
61603adant3r3 1215 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( F `  x ) ( +g  `  U ) ( F `
 y ) )  =  ( F `  ( x ( +g  `  R ) y ) ) )
6243oveqd 5905 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( x  .+  y
)  =  ( x ( +g  `  R
) y ) )
6362fveq2d 5531 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( F `  (
x  .+  y )
)  =  ( F `
 ( x ( +g  `  R ) y ) ) )
6461, 63eqtr4d 2223 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( F `  x ) ( +g  `  U ) ( F `
 y ) )  =  ( F `  ( x  .+  y ) ) )
6564oveq1d 5903 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( ( F `
 x ) ( +g  `  U ) ( F `  y
) ) ( +g  `  U ) ( F `
 z ) )  =  ( ( F `
 ( x  .+  y ) ) ( +g  `  U ) ( F `  z
) ) )
663, 15, 1, 2, 4, 16, 17imasaddval 12756 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  V  /\  z  e.  V
)  ->  ( ( F `  y )
( +g  `  U ) ( F `  z
) )  =  ( F `  ( y ( +g  `  R
) z ) ) )
67663adant3r1 1213 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( F `  y ) ( +g  `  U ) ( F `
 z ) )  =  ( F `  ( y ( +g  `  R ) z ) ) )
6843oveqd 5905 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( y  .+  z
)  =  ( y ( +g  `  R
) z ) )
6968fveq2d 5531 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( F `  (
y  .+  z )
)  =  ( F `
 ( y ( +g  `  R ) z ) ) )
7067, 69eqtr4d 2223 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( F `  y ) ( +g  `  U ) ( F `
 z ) )  =  ( F `  ( y  .+  z
) ) )
7170oveq2d 5904 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( F `  x ) ( +g  `  U ) ( ( F `  y ) ( +g  `  U
) ( F `  z ) ) )  =  ( ( F `
 x ) ( +g  `  U ) ( F `  (
y  .+  z )
) ) )
7259, 65, 713eqtr4d 2230 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( ( F `
 x ) ( +g  `  U ) ( F `  y
) ) ( +g  `  U ) ( F `
 z ) )  =  ( ( F `
 x ) ( +g  `  U ) ( ( F `  y ) ( +g  `  U ) ( F `
 z ) ) ) )
73 simp1 998 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  ( F `  x )  =  u )
74 simp2 999 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  ( F `  y )  =  v )
7573, 74oveq12d 5906 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  (
( F `  x
) ( +g  `  U
) ( F `  y ) )  =  ( u ( +g  `  U ) v ) )
76 simp3 1000 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  ( F `  z )  =  w )
7775, 76oveq12d 5906 . . . . . . . . . . 11  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  (
( ( F `  x ) ( +g  `  U ) ( F `
 y ) ) ( +g  `  U
) ( F `  z ) )  =  ( ( u ( +g  `  U ) v ) ( +g  `  U ) w ) )
7874, 76oveq12d 5906 . . . . . . . . . . . 12  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  (
( F `  y
) ( +g  `  U
) ( F `  z ) )  =  ( v ( +g  `  U ) w ) )
7973, 78oveq12d 5906 . . . . . . . . . . 11  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  (
( F `  x
) ( +g  `  U
) ( ( F `
 y ) ( +g  `  U ) ( F `  z
) ) )  =  ( u ( +g  `  U ) ( v ( +g  `  U
) w ) ) )
8077, 79eqeq12d 2202 . . . . . . . . . 10  |-  ( ( ( F `  x
)  =  u  /\  ( F `  y )  =  v  /\  ( F `  z )  =  w )  ->  (
( ( ( F `
 x ) ( +g  `  U ) ( F `  y
) ) ( +g  `  U ) ( F `
 z ) )  =  ( ( F `
 x ) ( +g  `  U ) ( ( F `  y ) ( +g  `  U ) ( F `
 z ) ) )  <->  ( ( u ( +g  `  U
) v ) ( +g  `  U ) w )  =  ( u ( +g  `  U
) ( v ( +g  `  U ) w ) ) ) )
8172, 80syl5ibcom 155 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V  /\  z  e.  V ) )  -> 
( ( ( F `
 x )  =  u  /\  ( F `
 y )  =  v  /\  ( F `
 z )  =  w )  ->  (
( u ( +g  `  U ) v ) ( +g  `  U
) w )  =  ( u ( +g  `  U ) ( v ( +g  `  U
) w ) ) ) )
82813exp2 1226 . . . . . . . 8  |-  ( ph  ->  ( x  e.  V  ->  ( y  e.  V  ->  ( z  e.  V  ->  ( ( ( F `
 x )  =  u  /\  ( F `
 y )  =  v  /\  ( F `
 z )  =  w )  ->  (
( u ( +g  `  U ) v ) ( +g  `  U
) w )  =  ( u ( +g  `  U ) ( v ( +g  `  U
) w ) ) ) ) ) ) )
8382imp32 257 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( z  e.  V  ->  ( ( ( F `
 x )  =  u  /\  ( F `
 y )  =  v  /\  ( F `
 z )  =  w )  ->  (
( u ( +g  `  U ) v ) ( +g  `  U
) w )  =  ( u ( +g  `  U ) ( v ( +g  `  U
) w ) ) ) ) )
8483rexlimdv 2603 . . . . . 6  |-  ( (
ph  /\  ( x  e.  V  /\  y  e.  V ) )  -> 
( E. z  e.  V  ( ( F `
 x )  =  u  /\  ( F `
 y )  =  v  /\  ( F `
 z )  =  w )  ->  (
( u ( +g  `  U ) v ) ( +g  `  U
) w )  =  ( u ( +g  `  U ) ( v ( +g  `  U
) w ) ) ) )
8584rexlimdvva 2612 . . . . 5  |-  ( ph  ->  ( E. x  e.  V  E. y  e.  V  E. z  e.  V  ( ( F `
 x )  =  u  /\  ( F `
 y )  =  v  /\  ( F `
 z )  =  w )  ->  (
( u ( +g  `  U ) v ) ( +g  `  U
) w )  =  ( u ( +g  `  U ) ( v ( +g  `  U
) w ) ) ) )
8641, 85sylbid 150 . . . 4  |-  ( ph  ->  ( ( u  e.  B  /\  v  e.  B  /\  w  e.  B )  ->  (
( u ( +g  `  U ) v ) ( +g  `  U
) w )  =  ( u ( +g  `  U ) ( v ( +g  `  U
) w ) ) ) )
8786imp 124 . . 3  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )  -> 
( ( u ( +g  `  U ) v ) ( +g  `  U ) w )  =  ( u ( +g  `  U ) ( v ( +g  `  U ) w ) ) )
88 fof 5450 . . . . 5  |-  ( F : V -onto-> B  ->  F : V --> B )
893, 88syl 14 . . . 4  |-  ( ph  ->  F : V --> B )
90 imasgrp2.3 . . . 4  |-  ( ph  ->  .0.  e.  V )
9189, 90ffvelcdmd 5665 . . 3  |-  ( ph  ->  ( F `  .0.  )  e.  B )
9233, 34syl 14 . . . . . 6  |-  ( ph  ->  ( u  e.  ran  F  <->  E. x  e.  V  ( F `  x )  =  u ) )
9328, 92bitr3d 190 . . . . 5  |-  ( ph  ->  ( u  e.  B  <->  E. x  e.  V  ( F `  x )  =  u ) )
94 simpl 109 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  V )  ->  ph )
9590adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  V )  ->  .0.  e.  V )
96 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  V )  ->  x  e.  V )
973, 15, 1, 2, 4, 16, 17imasaddval 12756 . . . . . . . . 9  |-  ( (
ph  /\  .0.  e.  V  /\  x  e.  V
)  ->  ( ( F `  .0.  ) ( +g  `  U ) ( F `  x
) )  =  ( F `  (  .0.  ( +g  `  R
) x ) ) )
9894, 95, 96, 97syl3anc 1248 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  (
( F `  .0.  ) ( +g  `  U
) ( F `  x ) )  =  ( F `  (  .0.  ( +g  `  R
) x ) ) )
998adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  V )  ->  .+  =  ( +g  `  R ) )
10099oveqd 5905 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  V )  ->  (  .0.  .+  x )  =  (  .0.  ( +g  `  R ) x ) )
101100fveq2d 5531 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  (  .0.  .+  x ) )  =  ( F `  (  .0.  ( +g  `  R
) x ) ) )
102 imasgrp2.4 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  (  .0.  .+  x ) )  =  ( F `  x
) )
10398, 101, 1023eqtr2d 2226 . . . . . . 7  |-  ( (
ph  /\  x  e.  V )  ->  (
( F `  .0.  ) ( +g  `  U
) ( F `  x ) )  =  ( F `  x
) )
104 oveq2 5896 . . . . . . . 8  |-  ( ( F `  x )  =  u  ->  (
( F `  .0.  ) ( +g  `  U
) ( F `  x ) )  =  ( ( F `  .0.  ) ( +g  `  U
) u ) )
105 id 19 . . . . . . . 8  |-  ( ( F `  x )  =  u  ->  ( F `  x )  =  u )
106104, 105eqeq12d 2202 . . . . . . 7  |-  ( ( F `  x )  =  u  ->  (
( ( F `  .0.  ) ( +g  `  U
) ( F `  x ) )  =  ( F `  x
)  <->  ( ( F `
 .0.  ) ( +g  `  U ) u )  =  u ) )
107103, 106syl5ibcom 155 . . . . . 6  |-  ( (
ph  /\  x  e.  V )  ->  (
( F `  x
)  =  u  -> 
( ( F `  .0.  ) ( +g  `  U
) u )  =  u ) )
108107rexlimdva 2604 . . . . 5  |-  ( ph  ->  ( E. x  e.  V  ( F `  x )  =  u  ->  ( ( F `
 .0.  ) ( +g  `  U ) u )  =  u ) )
10993, 108sylbid 150 . . . 4  |-  ( ph  ->  ( u  e.  B  ->  ( ( F `  .0.  ) ( +g  `  U
) u )  =  u ) )
110109imp 124 . . 3  |-  ( (
ph  /\  u  e.  B )  ->  (
( F `  .0.  ) ( +g  `  U
) u )  =  u )
11189adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  V )  ->  F : V --> B )
112 imasgrp2.5 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  V )  ->  N  e.  V )
113111, 112ffvelcdmd 5665 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  N )  e.  B )
1143, 15, 1, 2, 4, 16, 17imasaddval 12756 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  V  /\  x  e.  V
)  ->  ( ( F `  N )
( +g  `  U ) ( F `  x
) )  =  ( F `  ( N ( +g  `  R
) x ) ) )
11594, 112, 96, 114syl3anc 1248 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  V )  ->  (
( F `  N
) ( +g  `  U
) ( F `  x ) )  =  ( F `  ( N ( +g  `  R
) x ) ) )
11699oveqd 5905 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  V )  ->  ( N  .+  x )  =  ( N ( +g  `  R ) x ) )
117116fveq2d 5531 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  ( N  .+  x ) )  =  ( F `  ( N ( +g  `  R
) x ) ) )
118 imasgrp2.6 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  V )  ->  ( F `  ( N  .+  x ) )  =  ( F `  .0.  ) )
119115, 117, 1183eqtr2d 2226 . . . . . . . 8  |-  ( (
ph  /\  x  e.  V )  ->  (
( F `  N
) ( +g  `  U
) ( F `  x ) )  =  ( F `  .0.  ) )
120 oveq1 5895 . . . . . . . . . 10  |-  ( v  =  ( F `  N )  ->  (
v ( +g  `  U
) ( F `  x ) )  =  ( ( F `  N ) ( +g  `  U ) ( F `
 x ) ) )
121120eqeq1d 2196 . . . . . . . . 9  |-  ( v  =  ( F `  N )  ->  (
( v ( +g  `  U ) ( F `
 x ) )  =  ( F `  .0.  )  <->  ( ( F `
 N ) ( +g  `  U ) ( F `  x
) )  =  ( F `  .0.  )
) )
122121rspcev 2853 . . . . . . . 8  |-  ( ( ( F `  N
)  e.  B  /\  ( ( F `  N ) ( +g  `  U ) ( F `
 x ) )  =  ( F `  .0.  ) )  ->  E. v  e.  B  ( v
( +g  `  U ) ( F `  x
) )  =  ( F `  .0.  )
)
123113, 119, 122syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  x  e.  V )  ->  E. v  e.  B  ( v
( +g  `  U ) ( F `  x
) )  =  ( F `  .0.  )
)
124 oveq2 5896 . . . . . . . . 9  |-  ( ( F `  x )  =  u  ->  (
v ( +g  `  U
) ( F `  x ) )  =  ( v ( +g  `  U ) u ) )
125124eqeq1d 2196 . . . . . . . 8  |-  ( ( F `  x )  =  u  ->  (
( v ( +g  `  U ) ( F `
 x ) )  =  ( F `  .0.  )  <->  ( v ( +g  `  U ) u )  =  ( F `  .0.  )
) )
126125rexbidv 2488 . . . . . . 7  |-  ( ( F `  x )  =  u  ->  ( E. v  e.  B  ( v ( +g  `  U ) ( F `
 x ) )  =  ( F `  .0.  )  <->  E. v  e.  B  ( v ( +g  `  U ) u )  =  ( F `  .0.  ) ) )
127123, 126syl5ibcom 155 . . . . . 6  |-  ( (
ph  /\  x  e.  V )  ->  (
( F `  x
)  =  u  ->  E. v  e.  B  ( v ( +g  `  U ) u )  =  ( F `  .0.  ) ) )
128127rexlimdva 2604 . . . . 5  |-  ( ph  ->  ( E. x  e.  V  ( F `  x )  =  u  ->  E. v  e.  B  ( v ( +g  `  U ) u )  =  ( F `  .0.  ) ) )
12993, 128sylbid 150 . . . 4  |-  ( ph  ->  ( u  e.  B  ->  E. v  e.  B  ( v ( +g  `  U ) u )  =  ( F `  .0.  ) ) )
130129imp 124 . . 3  |-  ( (
ph  /\  u  e.  B )  ->  E. v  e.  B  ( v
( +g  `  U ) u )  =  ( F `  .0.  )
)
1315, 6, 25, 87, 91, 110, 130isgrpde 12919 . 2  |-  ( ph  ->  U  e.  Grp )
1325, 6, 91, 110, 131grpidd2 12937 . 2  |-  ( ph  ->  ( F `  .0.  )  =  ( 0g `  U ) )
133131, 132jca 306 1  |-  ( ph  ->  ( U  e.  Grp  /\  ( F `  .0.  )  =  ( 0g `  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158   E.wrex 2466    X. cxp 4636   ran crn 4639    Fn wfn 5223   -->wf 5224   -onto->wfo 5226   ` cfv 5228  (class class class)co 5888   Basecbs 12475   +g cplusg 12550   0gc0g 12722    "s cimas 12737   Grpcgrp 12898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-pre-ltirr 7936  ax-pre-lttrn 7938  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-tp 3612  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-ltxr 8010  df-inn 8933  df-2 8991  df-3 8992  df-ndx 12478  df-slot 12479  df-base 12481  df-plusg 12563  df-mulr 12564  df-0g 12724  df-iimas 12740  df-mgm 12793  df-sgrp 12826  df-mnd 12839  df-grp 12901
This theorem is referenced by:  imasgrp  13005  qusgrp2  13007
  Copyright terms: Public domain W3C validator