ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprrng Unicode version

Theorem opprrng 13709
Description: An opposite non-unital ring is a non-unital ring. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprrng  |-  ( R  e. Rng  ->  O  e. Rng )

Proof of Theorem opprrng
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3  |-  O  =  (oppr
`  R )
2 eqid 2196 . . 3  |-  ( Base `  R )  =  (
Base `  R )
31, 2opprbasg 13707 . 2  |-  ( R  e. Rng  ->  ( Base `  R
)  =  ( Base `  O ) )
4 eqid 2196 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
51, 4oppraddg 13708 . 2  |-  ( R  e. Rng  ->  ( +g  `  R
)  =  ( +g  `  O ) )
6 eqidd 2197 . 2  |-  ( R  e. Rng  ->  ( .r `  O )  =  ( .r `  O ) )
7 rngabl 13567 . . 3  |-  ( R  e. Rng  ->  R  e.  Abel )
8 eqidd 2197 . . . 4  |-  ( R  e. Rng  ->  ( Base `  R
)  =  ( Base `  R ) )
95oveqdr 5953 . . . 4  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( +g  `  R ) y )  =  ( x ( +g  `  O ) y ) )
108, 3, 9ablpropd 13502 . . 3  |-  ( R  e. Rng  ->  ( R  e. 
Abel 
<->  O  e.  Abel )
)
117, 10mpbid 147 . 2  |-  ( R  e. Rng  ->  O  e.  Abel )
12 eqid 2196 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
13 eqid 2196 . . . 4  |-  ( .r
`  O )  =  ( .r `  O
)
142, 12, 1, 13opprmulg 13703 . . 3  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( .r `  O
) y )  =  ( y ( .r
`  R ) x ) )
152, 12rngcl 13576 . . . 4  |-  ( ( R  e. Rng  /\  y  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
)  ->  ( y
( .r `  R
) x )  e.  ( Base `  R
) )
16153com23 1211 . . 3  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( y
( .r `  R
) x )  e.  ( Base `  R
) )
1714, 16eqeltrd 2273 . 2  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( .r `  O
) y )  e.  ( Base `  R
) )
18 simpl 109 . . . 4  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  R  e. Rng )
19 simpr3 1007 . . . 4  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  z  e.  ( Base `  R
) )
20 simpr2 1006 . . . 4  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  y  e.  ( Base `  R
) )
21 simpr1 1005 . . . 4  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  x  e.  ( Base `  R
) )
222, 12rngass 13571 . . . 4  |-  ( ( R  e. Rng  /\  (
z  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
) )  ->  (
( z ( .r
`  R ) y ) ( .r `  R ) x )  =  ( z ( .r `  R ) ( y ( .r
`  R ) x ) ) )
2318, 19, 20, 21, 22syl13anc 1251 . . 3  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( z ( .r
`  R ) y ) ( .r `  R ) x )  =  ( z ( .r `  R ) ( y ( .r
`  R ) x ) ) )
242, 12, 1, 13opprmulg 13703 . . . . . 6  |-  ( ( R  e. Rng  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
)  ->  ( y
( .r `  O
) z )  =  ( z ( .r
`  R ) y ) )
25243adant3r1 1214 . . . . 5  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
y ( .r `  O ) z )  =  ( z ( .r `  R ) y ) )
2625oveq2d 5941 . . . 4  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( .r `  O ) ( y ( .r `  O
) z ) )  =  ( x ( .r `  O ) ( z ( .r
`  R ) y ) ) )
272, 12rngcl 13576 . . . . . 6  |-  ( ( R  e. Rng  /\  z  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( z
( .r `  R
) y )  e.  ( Base `  R
) )
2818, 19, 20, 27syl3anc 1249 . . . . 5  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
z ( .r `  R ) y )  e.  ( Base `  R
) )
292, 12, 1, 13opprmulg 13703 . . . . 5  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  ( z
( .r `  R
) y )  e.  ( Base `  R
) )  ->  (
x ( .r `  O ) ( z ( .r `  R
) y ) )  =  ( ( z ( .r `  R
) y ) ( .r `  R ) x ) )
3018, 21, 28, 29syl3anc 1249 . . . 4  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( .r `  O ) ( z ( .r `  R
) y ) )  =  ( ( z ( .r `  R
) y ) ( .r `  R ) x ) )
3126, 30eqtrd 2229 . . 3  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( .r `  O ) ( y ( .r `  O
) z ) )  =  ( ( z ( .r `  R
) y ) ( .r `  R ) x ) )
32143adant3r3 1216 . . . . 5  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( .r `  O ) y )  =  ( y ( .r `  R ) x ) )
3332oveq1d 5940 . . . 4  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( .r
`  O ) y ) ( .r `  O ) z )  =  ( ( y ( .r `  R
) x ) ( .r `  O ) z ) )
3418, 20, 21, 15syl3anc 1249 . . . . 5  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
y ( .r `  R ) x )  e.  ( Base `  R
) )
352, 12, 1, 13opprmulg 13703 . . . . 5  |-  ( ( R  e. Rng  /\  (
y ( .r `  R ) x )  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
)  ->  ( (
y ( .r `  R ) x ) ( .r `  O
) z )  =  ( z ( .r
`  R ) ( y ( .r `  R ) x ) ) )
3618, 34, 19, 35syl3anc 1249 . . . 4  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( y ( .r
`  R ) x ) ( .r `  O ) z )  =  ( z ( .r `  R ) ( y ( .r
`  R ) x ) ) )
3733, 36eqtrd 2229 . . 3  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( .r
`  O ) y ) ( .r `  O ) z )  =  ( z ( .r `  R ) ( y ( .r
`  R ) x ) ) )
3823, 31, 373eqtr4rd 2240 . 2  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( .r
`  O ) y ) ( .r `  O ) z )  =  ( x ( .r `  O ) ( y ( .r
`  O ) z ) ) )
392, 4, 12rngdir 13573 . . . 4  |-  ( ( R  e. Rng  /\  (
y  e.  ( Base `  R )  /\  z  e.  ( Base `  R
)  /\  x  e.  ( Base `  R )
) )  ->  (
( y ( +g  `  R ) z ) ( .r `  R
) x )  =  ( ( y ( .r `  R ) x ) ( +g  `  R ) ( z ( .r `  R
) x ) ) )
4018, 20, 19, 21, 39syl13anc 1251 . . 3  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( y ( +g  `  R ) z ) ( .r `  R
) x )  =  ( ( y ( .r `  R ) x ) ( +g  `  R ) ( z ( .r `  R
) x ) ) )
412, 4rngacl 13574 . . . . 5  |-  ( ( R  e. Rng  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
)  ->  ( y
( +g  `  R ) z )  e.  (
Base `  R )
)
42413adant3r1 1214 . . . 4  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
y ( +g  `  R
) z )  e.  ( Base `  R
) )
432, 12, 1, 13opprmulg 13703 . . . 4  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  ( y
( +g  `  R ) z )  e.  (
Base `  R )
)  ->  ( x
( .r `  O
) ( y ( +g  `  R ) z ) )  =  ( ( y ( +g  `  R ) z ) ( .r
`  R ) x ) )
4418, 21, 42, 43syl3anc 1249 . . 3  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( .r `  O ) ( y ( +g  `  R
) z ) )  =  ( ( y ( +g  `  R
) z ) ( .r `  R ) x ) )
452, 12, 1, 13opprmulg 13703 . . . . 5  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
)  ->  ( x
( .r `  O
) z )  =  ( z ( .r
`  R ) x ) )
4618, 21, 19, 45syl3anc 1249 . . . 4  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( .r `  O ) z )  =  ( z ( .r `  R ) x ) )
4732, 46oveq12d 5943 . . 3  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( .r
`  O ) y ) ( +g  `  R
) ( x ( .r `  O ) z ) )  =  ( ( y ( .r `  R ) x ) ( +g  `  R ) ( z ( .r `  R
) x ) ) )
4840, 44, 473eqtr4d 2239 . 2  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( .r `  O ) ( y ( +g  `  R
) z ) )  =  ( ( x ( .r `  O
) y ) ( +g  `  R ) ( x ( .r
`  O ) z ) ) )
492, 4, 12rngdi 13572 . . . 4  |-  ( ( R  e. Rng  /\  (
z  e.  ( Base `  R )  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) )  ->  (
z ( .r `  R ) ( x ( +g  `  R
) y ) )  =  ( ( z ( .r `  R
) x ) ( +g  `  R ) ( z ( .r
`  R ) y ) ) )
5018, 19, 21, 20, 49syl13anc 1251 . . 3  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
z ( .r `  R ) ( x ( +g  `  R
) y ) )  =  ( ( z ( .r `  R
) x ) ( +g  `  R ) ( z ( .r
`  R ) y ) ) )
512, 4rngacl 13574 . . . . 5  |-  ( ( R  e. Rng  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( +g  `  R ) y )  e.  (
Base `  R )
)
52513adant3r3 1216 . . . 4  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
x ( +g  `  R
) y )  e.  ( Base `  R
) )
532, 12, 1, 13opprmulg 13703 . . . 4  |-  ( ( R  e. Rng  /\  (
x ( +g  `  R
) y )  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
)  ->  ( (
x ( +g  `  R
) y ) ( .r `  O ) z )  =  ( z ( .r `  R ) ( x ( +g  `  R
) y ) ) )
5418, 52, 19, 53syl3anc 1249 . . 3  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( +g  `  R ) y ) ( .r `  O
) z )  =  ( z ( .r
`  R ) ( x ( +g  `  R
) y ) ) )
5546, 25oveq12d 5943 . . 3  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( .r
`  O ) z ) ( +g  `  R
) ( y ( .r `  O ) z ) )  =  ( ( z ( .r `  R ) x ) ( +g  `  R ) ( z ( .r `  R
) y ) ) )
5650, 54, 553eqtr4d 2239 . 2  |-  ( ( R  e. Rng  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
)  /\  z  e.  ( Base `  R )
) )  ->  (
( x ( +g  `  R ) y ) ( .r `  O
) z )  =  ( ( x ( .r `  O ) z ) ( +g  `  R ) ( y ( .r `  O
) z ) ) )
573, 5, 6, 11, 17, 38, 48, 56isrngd 13585 1  |-  ( R  e. Rng  ->  O  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   .rcmulr 12781   Abelcabl 13491  Rngcrng 13564  opprcoppr 13699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-cmn 13492  df-abl 13493  df-mgp 13553  df-rng 13565  df-oppr 13700
This theorem is referenced by:  opprrngbg  13710  opprsubrngg  13843  isridlrng  14114  2idlcpblrng  14155
  Copyright terms: Public domain W3C validator