| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opprrng | Unicode version | ||
| Description: An opposite non-unital ring is a non-unital ring. (Contributed by AV, 15-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| opprbas.1 | 
 | 
| Ref | Expression | 
|---|---|
| opprrng | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opprbas.1 | 
. . 3
 | |
| 2 | eqid 2196 | 
. . 3
 | |
| 3 | 1, 2 | opprbasg 13631 | 
. 2
 | 
| 4 | eqid 2196 | 
. . 3
 | |
| 5 | 1, 4 | oppraddg 13632 | 
. 2
 | 
| 6 | eqidd 2197 | 
. 2
 | |
| 7 | rngabl 13491 | 
. . 3
 | |
| 8 | eqidd 2197 | 
. . . 4
 | |
| 9 | 5 | oveqdr 5950 | 
. . . 4
 | 
| 10 | 8, 3, 9 | ablpropd 13426 | 
. . 3
 | 
| 11 | 7, 10 | mpbid 147 | 
. 2
 | 
| 12 | eqid 2196 | 
. . . 4
 | |
| 13 | eqid 2196 | 
. . . 4
 | |
| 14 | 2, 12, 1, 13 | opprmulg 13627 | 
. . 3
 | 
| 15 | 2, 12 | rngcl 13500 | 
. . . 4
 | 
| 16 | 15 | 3com23 1211 | 
. . 3
 | 
| 17 | 14, 16 | eqeltrd 2273 | 
. 2
 | 
| 18 | simpl 109 | 
. . . 4
 | |
| 19 | simpr3 1007 | 
. . . 4
 | |
| 20 | simpr2 1006 | 
. . . 4
 | |
| 21 | simpr1 1005 | 
. . . 4
 | |
| 22 | 2, 12 | rngass 13495 | 
. . . 4
 | 
| 23 | 18, 19, 20, 21, 22 | syl13anc 1251 | 
. . 3
 | 
| 24 | 2, 12, 1, 13 | opprmulg 13627 | 
. . . . . 6
 | 
| 25 | 24 | 3adant3r1 1214 | 
. . . . 5
 | 
| 26 | 25 | oveq2d 5938 | 
. . . 4
 | 
| 27 | 2, 12 | rngcl 13500 | 
. . . . . 6
 | 
| 28 | 18, 19, 20, 27 | syl3anc 1249 | 
. . . . 5
 | 
| 29 | 2, 12, 1, 13 | opprmulg 13627 | 
. . . . 5
 | 
| 30 | 18, 21, 28, 29 | syl3anc 1249 | 
. . . 4
 | 
| 31 | 26, 30 | eqtrd 2229 | 
. . 3
 | 
| 32 | 14 | 3adant3r3 1216 | 
. . . . 5
 | 
| 33 | 32 | oveq1d 5937 | 
. . . 4
 | 
| 34 | 18, 20, 21, 15 | syl3anc 1249 | 
. . . . 5
 | 
| 35 | 2, 12, 1, 13 | opprmulg 13627 | 
. . . . 5
 | 
| 36 | 18, 34, 19, 35 | syl3anc 1249 | 
. . . 4
 | 
| 37 | 33, 36 | eqtrd 2229 | 
. . 3
 | 
| 38 | 23, 31, 37 | 3eqtr4rd 2240 | 
. 2
 | 
| 39 | 2, 4, 12 | rngdir 13497 | 
. . . 4
 | 
| 40 | 18, 20, 19, 21, 39 | syl13anc 1251 | 
. . 3
 | 
| 41 | 2, 4 | rngacl 13498 | 
. . . . 5
 | 
| 42 | 41 | 3adant3r1 1214 | 
. . . 4
 | 
| 43 | 2, 12, 1, 13 | opprmulg 13627 | 
. . . 4
 | 
| 44 | 18, 21, 42, 43 | syl3anc 1249 | 
. . 3
 | 
| 45 | 2, 12, 1, 13 | opprmulg 13627 | 
. . . . 5
 | 
| 46 | 18, 21, 19, 45 | syl3anc 1249 | 
. . . 4
 | 
| 47 | 32, 46 | oveq12d 5940 | 
. . 3
 | 
| 48 | 40, 44, 47 | 3eqtr4d 2239 | 
. 2
 | 
| 49 | 2, 4, 12 | rngdi 13496 | 
. . . 4
 | 
| 50 | 18, 19, 21, 20, 49 | syl13anc 1251 | 
. . 3
 | 
| 51 | 2, 4 | rngacl 13498 | 
. . . . 5
 | 
| 52 | 51 | 3adant3r3 1216 | 
. . . 4
 | 
| 53 | 2, 12, 1, 13 | opprmulg 13627 | 
. . . 4
 | 
| 54 | 18, 52, 19, 53 | syl3anc 1249 | 
. . 3
 | 
| 55 | 46, 25 | oveq12d 5940 | 
. . 3
 | 
| 56 | 50, 54, 55 | 3eqtr4d 2239 | 
. 2
 | 
| 57 | 3, 5, 6, 11, 17, 38, 48, 56 | isrngd 13509 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-tpos 6303 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-cmn 13416 df-abl 13417 df-mgp 13477 df-rng 13489 df-oppr 13624 | 
| This theorem is referenced by: opprrngbg 13634 opprsubrngg 13767 isridlrng 14038 2idlcpblrng 14079 | 
| Copyright terms: Public domain | W3C validator |