ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos1bnd Unicode version

Theorem cos1bnd 11638
Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos1bnd  |-  ( ( 1  /  3 )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
2  /  3 ) )

Proof of Theorem cos1bnd
StepHypRef Expression
1 sq1 10494 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
21oveq1i 5828 . . . . . . 7  |-  ( ( 1 ^ 2 )  /  3 )  =  ( 1  /  3
)
32oveq2i 5829 . . . . . 6  |-  ( 2  x.  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 2  x.  (
1  /  3 ) )
4 2cn 8887 . . . . . . 7  |-  2  e.  CC
5 3cn 8891 . . . . . . 7  |-  3  e.  CC
6 3ap0 8912 . . . . . . 7  |-  3 #  0
74, 5, 6divrecapi 8613 . . . . . 6  |-  ( 2  /  3 )  =  ( 2  x.  (
1  /  3 ) )
83, 7eqtr4i 2181 . . . . 5  |-  ( 2  x.  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 2  /  3
)
98oveq2i 5829 . . . 4  |-  ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  /  3
) ) )  =  ( 1  -  (
2  /  3 ) )
10 ax-1cn 7808 . . . . 5  |-  1  e.  CC
114, 5, 6divclapi 8610 . . . . 5  |-  ( 2  /  3 )  e.  CC
125, 6recclapi 8598 . . . . 5  |-  ( 1  /  3 )  e.  CC
13 df-3 8876 . . . . . . 7  |-  3  =  ( 2  +  1 )
1413oveq1i 5828 . . . . . 6  |-  ( 3  /  3 )  =  ( ( 2  +  1 )  /  3
)
155, 6dividapi 8601 . . . . . 6  |-  ( 3  /  3 )  =  1
164, 10, 5, 6divdirapi 8625 . . . . . 6  |-  ( ( 2  +  1 )  /  3 )  =  ( ( 2  / 
3 )  +  ( 1  /  3 ) )
1714, 15, 163eqtr3ri 2187 . . . . 5  |-  ( ( 2  /  3 )  +  ( 1  / 
3 ) )  =  1
1810, 11, 12, 17subaddrii 8147 . . . 4  |-  ( 1  -  ( 2  / 
3 ) )  =  ( 1  /  3
)
199, 18eqtri 2178 . . 3  |-  ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  /  3
) ) )  =  ( 1  /  3
)
20 1re 7860 . . . . 5  |-  1  e.  RR
21 0lt1 7985 . . . . 5  |-  0  <  1
22 1le1 8430 . . . . 5  |-  1  <_  1
23 0xr 7907 . . . . . . 7  |-  0  e.  RR*
24 elioc2 9822 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
1  e.  ( 0 (,] 1 )  <->  ( 1  e.  RR  /\  0  <  1  /\  1  <_ 
1 ) ) )
2523, 20, 24mp2an 423 . . . . . 6  |-  ( 1  e.  ( 0 (,] 1 )  <->  ( 1  e.  RR  /\  0  <  1  /\  1  <_ 
1 ) )
26 cos01bnd 11637 . . . . . 6  |-  ( 1  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( 1 ^ 2 )  /  3 ) ) )  <  ( cos `  1 )  /\  ( cos `  1 )  <  ( 1  -  ( ( 1 ^ 2 )  /  3
) ) ) )
2725, 26sylbir 134 . . . . 5  |-  ( ( 1  e.  RR  /\  0  <  1  /\  1  <_  1 )  ->  (
( 1  -  (
2  x.  ( ( 1 ^ 2 )  /  3 ) ) )  <  ( cos `  1 )  /\  ( cos `  1 )  <  ( 1  -  ( ( 1 ^ 2 )  /  3
) ) ) )
2820, 21, 22, 27mp3an 1319 . . . 4  |-  ( ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  / 
3 ) ) )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
1  -  ( ( 1 ^ 2 )  /  3 ) ) )
2928simpli 110 . . 3  |-  ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  /  3
) ) )  < 
( cos `  1
)
3019, 29eqbrtrri 3987 . 2  |-  ( 1  /  3 )  < 
( cos `  1
)
3128simpri 112 . . 3  |-  ( cos `  1 )  < 
( 1  -  (
( 1 ^ 2 )  /  3 ) )
322oveq2i 5829 . . . 4  |-  ( 1  -  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 1  -  (
1  /  3 ) )
3310, 12, 11subadd2i 8146 . . . . 5  |-  ( ( 1  -  ( 1  /  3 ) )  =  ( 2  / 
3 )  <->  ( (
2  /  3 )  +  ( 1  / 
3 ) )  =  1 )
3417, 33mpbir 145 . . . 4  |-  ( 1  -  ( 1  / 
3 ) )  =  ( 2  /  3
)
3532, 34eqtri 2178 . . 3  |-  ( 1  -  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 2  /  3
)
3631, 35breqtri 3989 . 2  |-  ( cos `  1 )  < 
( 2  /  3
)
3730, 36pm3.2i 270 1  |-  ( ( 1  /  3 )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
2  /  3 ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128   class class class wbr 3965   ` cfv 5167  (class class class)co 5818   RRcr 7714   0cc0 7715   1c1 7716    + caddc 7718    x. cmul 7720   RR*cxr 7894    < clt 7895    <_ cle 7896    - cmin 8029    / cdiv 8528   2c2 8867   3c3 8868   (,]cioc 9775   ^cexp 10400   cosccos 11524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-frec 6332  df-1o 6357  df-oadd 6361  df-er 6473  df-en 6679  df-dom 6680  df-fin 6681  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-5 8878  df-6 8879  df-7 8880  df-8 8881  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-ioc 9779  df-ico 9780  df-fz 9895  df-fzo 10024  df-seqfrec 10327  df-exp 10401  df-fac 10582  df-ihash 10632  df-shft 10697  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-clim 11158  df-sumdc 11233  df-ef 11527  df-cos 11530
This theorem is referenced by:  cos2bnd  11639
  Copyright terms: Public domain W3C validator