ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos1bnd Unicode version

Theorem cos1bnd 11700
Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos1bnd  |-  ( ( 1  /  3 )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
2  /  3 ) )

Proof of Theorem cos1bnd
StepHypRef Expression
1 sq1 10548 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
21oveq1i 5852 . . . . . . 7  |-  ( ( 1 ^ 2 )  /  3 )  =  ( 1  /  3
)
32oveq2i 5853 . . . . . 6  |-  ( 2  x.  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 2  x.  (
1  /  3 ) )
4 2cn 8928 . . . . . . 7  |-  2  e.  CC
5 3cn 8932 . . . . . . 7  |-  3  e.  CC
6 3ap0 8953 . . . . . . 7  |-  3 #  0
74, 5, 6divrecapi 8653 . . . . . 6  |-  ( 2  /  3 )  =  ( 2  x.  (
1  /  3 ) )
83, 7eqtr4i 2189 . . . . 5  |-  ( 2  x.  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 2  /  3
)
98oveq2i 5853 . . . 4  |-  ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  /  3
) ) )  =  ( 1  -  (
2  /  3 ) )
10 ax-1cn 7846 . . . . 5  |-  1  e.  CC
114, 5, 6divclapi 8650 . . . . 5  |-  ( 2  /  3 )  e.  CC
125, 6recclapi 8638 . . . . 5  |-  ( 1  /  3 )  e.  CC
13 df-3 8917 . . . . . . 7  |-  3  =  ( 2  +  1 )
1413oveq1i 5852 . . . . . 6  |-  ( 3  /  3 )  =  ( ( 2  +  1 )  /  3
)
155, 6dividapi 8641 . . . . . 6  |-  ( 3  /  3 )  =  1
164, 10, 5, 6divdirapi 8665 . . . . . 6  |-  ( ( 2  +  1 )  /  3 )  =  ( ( 2  / 
3 )  +  ( 1  /  3 ) )
1714, 15, 163eqtr3ri 2195 . . . . 5  |-  ( ( 2  /  3 )  +  ( 1  / 
3 ) )  =  1
1810, 11, 12, 17subaddrii 8187 . . . 4  |-  ( 1  -  ( 2  / 
3 ) )  =  ( 1  /  3
)
199, 18eqtri 2186 . . 3  |-  ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  /  3
) ) )  =  ( 1  /  3
)
20 1re 7898 . . . . 5  |-  1  e.  RR
21 0lt1 8025 . . . . 5  |-  0  <  1
22 1le1 8470 . . . . 5  |-  1  <_  1
23 0xr 7945 . . . . . . 7  |-  0  e.  RR*
24 elioc2 9872 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
1  e.  ( 0 (,] 1 )  <->  ( 1  e.  RR  /\  0  <  1  /\  1  <_ 
1 ) ) )
2523, 20, 24mp2an 423 . . . . . 6  |-  ( 1  e.  ( 0 (,] 1 )  <->  ( 1  e.  RR  /\  0  <  1  /\  1  <_ 
1 ) )
26 cos01bnd 11699 . . . . . 6  |-  ( 1  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( 1 ^ 2 )  /  3 ) ) )  <  ( cos `  1 )  /\  ( cos `  1 )  <  ( 1  -  ( ( 1 ^ 2 )  /  3
) ) ) )
2725, 26sylbir 134 . . . . 5  |-  ( ( 1  e.  RR  /\  0  <  1  /\  1  <_  1 )  ->  (
( 1  -  (
2  x.  ( ( 1 ^ 2 )  /  3 ) ) )  <  ( cos `  1 )  /\  ( cos `  1 )  <  ( 1  -  ( ( 1 ^ 2 )  /  3
) ) ) )
2820, 21, 22, 27mp3an 1327 . . . 4  |-  ( ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  / 
3 ) ) )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
1  -  ( ( 1 ^ 2 )  /  3 ) ) )
2928simpli 110 . . 3  |-  ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  /  3
) ) )  < 
( cos `  1
)
3019, 29eqbrtrri 4005 . 2  |-  ( 1  /  3 )  < 
( cos `  1
)
3128simpri 112 . . 3  |-  ( cos `  1 )  < 
( 1  -  (
( 1 ^ 2 )  /  3 ) )
322oveq2i 5853 . . . 4  |-  ( 1  -  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 1  -  (
1  /  3 ) )
3310, 12, 11subadd2i 8186 . . . . 5  |-  ( ( 1  -  ( 1  /  3 ) )  =  ( 2  / 
3 )  <->  ( (
2  /  3 )  +  ( 1  / 
3 ) )  =  1 )
3417, 33mpbir 145 . . . 4  |-  ( 1  -  ( 1  / 
3 ) )  =  ( 2  /  3
)
3532, 34eqtri 2186 . . 3  |-  ( 1  -  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 2  /  3
)
3631, 35breqtri 4007 . 2  |-  ( cos `  1 )  < 
( 2  /  3
)
3730, 36pm3.2i 270 1  |-  ( ( 1  /  3 )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
2  /  3 ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758   RR*cxr 7932    < clt 7933    <_ cle 7934    - cmin 8069    / cdiv 8568   2c2 8908   3c3 8909   (,]cioc 9825   ^cexp 10454   cosccos 11586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ioc 9829  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-cos 11592
This theorem is referenced by:  cos2bnd  11701
  Copyright terms: Public domain W3C validator