ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cos1bnd Unicode version

Theorem cos1bnd 11905
Description: Bounds on the cosine of 1. (Contributed by Paul Chapman, 19-Jan-2008.)
Assertion
Ref Expression
cos1bnd  |-  ( ( 1  /  3 )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
2  /  3 ) )

Proof of Theorem cos1bnd
StepHypRef Expression
1 sq1 10707 . . . . . . . 8  |-  ( 1 ^ 2 )  =  1
21oveq1i 5929 . . . . . . 7  |-  ( ( 1 ^ 2 )  /  3 )  =  ( 1  /  3
)
32oveq2i 5930 . . . . . 6  |-  ( 2  x.  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 2  x.  (
1  /  3 ) )
4 2cn 9055 . . . . . . 7  |-  2  e.  CC
5 3cn 9059 . . . . . . 7  |-  3  e.  CC
6 3ap0 9080 . . . . . . 7  |-  3 #  0
74, 5, 6divrecapi 8778 . . . . . 6  |-  ( 2  /  3 )  =  ( 2  x.  (
1  /  3 ) )
83, 7eqtr4i 2217 . . . . 5  |-  ( 2  x.  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 2  /  3
)
98oveq2i 5930 . . . 4  |-  ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  /  3
) ) )  =  ( 1  -  (
2  /  3 ) )
10 ax-1cn 7967 . . . . 5  |-  1  e.  CC
114, 5, 6divclapi 8775 . . . . 5  |-  ( 2  /  3 )  e.  CC
125, 6recclapi 8763 . . . . 5  |-  ( 1  /  3 )  e.  CC
13 df-3 9044 . . . . . . 7  |-  3  =  ( 2  +  1 )
1413oveq1i 5929 . . . . . 6  |-  ( 3  /  3 )  =  ( ( 2  +  1 )  /  3
)
155, 6dividapi 8766 . . . . . 6  |-  ( 3  /  3 )  =  1
164, 10, 5, 6divdirapi 8790 . . . . . 6  |-  ( ( 2  +  1 )  /  3 )  =  ( ( 2  / 
3 )  +  ( 1  /  3 ) )
1714, 15, 163eqtr3ri 2223 . . . . 5  |-  ( ( 2  /  3 )  +  ( 1  / 
3 ) )  =  1
1810, 11, 12, 17subaddrii 8310 . . . 4  |-  ( 1  -  ( 2  / 
3 ) )  =  ( 1  /  3
)
199, 18eqtri 2214 . . 3  |-  ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  /  3
) ) )  =  ( 1  /  3
)
20 1re 8020 . . . . 5  |-  1  e.  RR
21 0lt1 8148 . . . . 5  |-  0  <  1
22 1le1 8593 . . . . 5  |-  1  <_  1
23 0xr 8068 . . . . . . 7  |-  0  e.  RR*
24 elioc2 10005 . . . . . . 7  |-  ( ( 0  e.  RR*  /\  1  e.  RR )  ->  (
1  e.  ( 0 (,] 1 )  <->  ( 1  e.  RR  /\  0  <  1  /\  1  <_ 
1 ) ) )
2523, 20, 24mp2an 426 . . . . . 6  |-  ( 1  e.  ( 0 (,] 1 )  <->  ( 1  e.  RR  /\  0  <  1  /\  1  <_ 
1 ) )
26 cos01bnd 11904 . . . . . 6  |-  ( 1  e.  ( 0 (,] 1 )  ->  (
( 1  -  (
2  x.  ( ( 1 ^ 2 )  /  3 ) ) )  <  ( cos `  1 )  /\  ( cos `  1 )  <  ( 1  -  ( ( 1 ^ 2 )  /  3
) ) ) )
2725, 26sylbir 135 . . . . 5  |-  ( ( 1  e.  RR  /\  0  <  1  /\  1  <_  1 )  ->  (
( 1  -  (
2  x.  ( ( 1 ^ 2 )  /  3 ) ) )  <  ( cos `  1 )  /\  ( cos `  1 )  <  ( 1  -  ( ( 1 ^ 2 )  /  3
) ) ) )
2820, 21, 22, 27mp3an 1348 . . . 4  |-  ( ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  / 
3 ) ) )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
1  -  ( ( 1 ^ 2 )  /  3 ) ) )
2928simpli 111 . . 3  |-  ( 1  -  ( 2  x.  ( ( 1 ^ 2 )  /  3
) ) )  < 
( cos `  1
)
3019, 29eqbrtrri 4053 . 2  |-  ( 1  /  3 )  < 
( cos `  1
)
3128simpri 113 . . 3  |-  ( cos `  1 )  < 
( 1  -  (
( 1 ^ 2 )  /  3 ) )
322oveq2i 5930 . . . 4  |-  ( 1  -  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 1  -  (
1  /  3 ) )
3310, 12, 11subadd2i 8309 . . . . 5  |-  ( ( 1  -  ( 1  /  3 ) )  =  ( 2  / 
3 )  <->  ( (
2  /  3 )  +  ( 1  / 
3 ) )  =  1 )
3417, 33mpbir 146 . . . 4  |-  ( 1  -  ( 1  / 
3 ) )  =  ( 2  /  3
)
3532, 34eqtri 2214 . . 3  |-  ( 1  -  ( ( 1 ^ 2 )  / 
3 ) )  =  ( 2  /  3
)
3631, 35breqtri 4055 . 2  |-  ( cos `  1 )  < 
( 2  /  3
)
3730, 36pm3.2i 272 1  |-  ( ( 1  /  3 )  <  ( cos `  1
)  /\  ( cos `  1 )  <  (
2  /  3 ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879   RR*cxr 8055    < clt 8056    <_ cle 8057    - cmin 8192    / cdiv 8693   2c2 9035   3c3 9036   (,]cioc 9958   ^cexp 10612   cosccos 11791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-ioc 9962  df-ico 9963  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-ihash 10850  df-shft 10962  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ef 11794  df-cos 11797
This theorem is referenced by:  cos2bnd  11906
  Copyright terms: Public domain W3C validator