![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3lcm2e6 | Unicode version |
Description: The least common multiple of three and two is six. The operands are unequal primes and thus coprime, so the result is (the absolute value of) their product. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
3lcm2e6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 8697 |
. . . . . 6
![]() ![]() ![]() ![]() | |
2 | 2lt3 8791 |
. . . . . 6
![]() ![]() ![]() ![]() | |
3 | 1, 2 | gtneii 7779 |
. . . . 5
![]() ![]() ![]() ![]() |
4 | 3prm 11652 |
. . . . . 6
![]() ![]() ![]() ![]() | |
5 | 2prm 11651 |
. . . . . 6
![]() ![]() ![]() ![]() | |
6 | prmrp 11666 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | mp2an 420 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3, 7 | mpbir 145 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | oveq2i 5739 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 3nn 8783 |
. . . 4
![]() ![]() ![]() ![]() | |
11 | 2nn 8782 |
. . . 4
![]() ![]() ![]() ![]() | |
12 | lcmgcdnn 11606 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 10, 11, 12 | mp2an 420 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 10 | nnzi 8976 |
. . . . . 6
![]() ![]() ![]() ![]() |
15 | 11 | nnzi 8976 |
. . . . . 6
![]() ![]() ![]() ![]() |
16 | lcmcl 11596 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 14, 15, 16 | mp2an 420 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 17 | nn0cni 8890 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 18 | mulid1i 7689 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 9, 13, 19 | 3eqtr3ri 2144 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 3t2e6 8777 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
22 | 20, 21 | eqtri 2135 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 ax-cnex 7633 ax-resscn 7634 ax-1cn 7635 ax-1re 7636 ax-icn 7637 ax-addcl 7638 ax-addrcl 7639 ax-mulcl 7640 ax-mulrcl 7641 ax-addcom 7642 ax-mulcom 7643 ax-addass 7644 ax-mulass 7645 ax-distr 7646 ax-i2m1 7647 ax-0lt1 7648 ax-1rid 7649 ax-0id 7650 ax-rnegex 7651 ax-precex 7652 ax-cnre 7653 ax-pre-ltirr 7654 ax-pre-ltwlin 7655 ax-pre-lttrn 7656 ax-pre-apti 7657 ax-pre-ltadd 7658 ax-pre-mulgt0 7659 ax-pre-mulext 7660 ax-arch 7661 ax-caucvg 7662 |
This theorem depends on definitions: df-bi 116 df-stab 799 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rmo 2398 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-if 3441 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-po 4178 df-iso 4179 df-iord 4248 df-on 4250 df-ilim 4251 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-isom 5090 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-frec 6242 df-1o 6267 df-2o 6268 df-er 6383 df-en 6589 df-sup 6823 df-inf 6824 df-pnf 7723 df-mnf 7724 df-xr 7725 df-ltxr 7726 df-le 7727 df-sub 7855 df-neg 7856 df-reap 8252 df-ap 8259 df-div 8343 df-inn 8628 df-2 8686 df-3 8687 df-4 8688 df-5 8689 df-6 8690 df-n0 8879 df-z 8956 df-uz 9226 df-q 9311 df-rp 9341 df-fz 9681 df-fzo 9810 df-fl 9933 df-mod 9986 df-seqfrec 10109 df-exp 10183 df-cj 10504 df-re 10505 df-im 10506 df-rsqrt 10659 df-abs 10660 df-dvds 11339 df-gcd 11481 df-lcm 11585 df-prm 11632 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |