ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosq34lt1 Unicode version

Theorem cosq34lt1 15026
Description: Cosine is less than one in the third and fourth quadrants. (Contributed by Jim Kingdon, 19-Mar-2024.)
Assertion
Ref Expression
cosq34lt1  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )

Proof of Theorem cosq34lt1
StepHypRef Expression
1 pire 14962 . . . . . . . 8  |-  pi  e.  RR
2 2re 9054 . . . . . . . . . 10  |-  2  e.  RR
32, 1remulcli 8035 . . . . . . . . 9  |-  ( 2  x.  pi )  e.  RR
43rexri 8079 . . . . . . . 8  |-  ( 2  x.  pi )  e. 
RR*
5 elico2 10006 . . . . . . . 8  |-  ( ( pi  e.  RR  /\  ( 2  x.  pi )  e.  RR* )  -> 
( A  e.  ( pi [,) ( 2  x.  pi ) )  <-> 
( A  e.  RR  /\  pi  <_  A  /\  A  <  ( 2  x.  pi ) ) ) )
61, 4, 5mp2an 426 . . . . . . 7  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  <->  ( A  e.  RR  /\  pi  <_  A  /\  A  <  (
2  x.  pi ) ) )
76simp1bi 1014 . . . . . 6  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  A  e.  RR )
87recnd 8050 . . . . 5  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  A  e.  CC )
9 2cn 9055 . . . . . . 7  |-  2  e.  CC
10 picn 14963 . . . . . . 7  |-  pi  e.  CC
119, 10mulcli 8026 . . . . . 6  |-  ( 2  x.  pi )  e.  CC
1211a1i 9 . . . . 5  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  (
2  x.  pi )  e.  CC )
138, 12subcld 8332 . . . 4  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( A  -  ( 2  x.  pi ) )  e.  CC )
14 cosneg 11873 . . . 4  |-  ( ( A  -  ( 2  x.  pi ) )  e.  CC  ->  ( cos `  -u ( A  -  ( 2  x.  pi ) ) )  =  ( cos `  ( A  -  ( 2  x.  pi ) ) ) )
1513, 14syl 14 . . 3  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( cos `  -u ( A  -  ( 2  x.  pi ) ) )  =  ( cos `  ( A  -  ( 2  x.  pi ) ) ) )
1612mulm1d 8431 . . . . . 6  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( -u 1  x.  ( 2  x.  pi ) )  =  -u ( 2  x.  pi ) )
1716oveq2d 5935 . . . . 5  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( A  +  ( -u 1  x.  ( 2  x.  pi ) ) )  =  ( A  +  -u ( 2  x.  pi ) ) )
188, 12negsubd 8338 . . . . 5  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( A  +  -u ( 2  x.  pi ) )  =  ( A  -  ( 2  x.  pi ) ) )
1917, 18eqtrd 2226 . . . 4  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( A  +  ( -u 1  x.  ( 2  x.  pi ) ) )  =  ( A  -  (
2  x.  pi ) ) )
2019fveq2d 5559 . . 3  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( cos `  ( A  +  ( -u 1  x.  (
2  x.  pi ) ) ) )  =  ( cos `  ( A  -  ( 2  x.  pi ) ) ) )
21 neg1z 9352 . . . 4  |-  -u 1  e.  ZZ
22 cosper 14986 . . . 4  |-  ( ( A  e.  CC  /\  -u 1  e.  ZZ )  ->  ( cos `  ( A  +  ( -u 1  x.  ( 2  x.  pi ) ) ) )  =  ( cos `  A
) )
238, 21, 22sylancl 413 . . 3  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( cos `  ( A  +  ( -u 1  x.  (
2  x.  pi ) ) ) )  =  ( cos `  A
) )
2415, 20, 233eqtr2d 2232 . 2  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( cos `  -u ( A  -  ( 2  x.  pi ) ) )  =  ( cos `  A
) )
25 0xr 8068 . . . . 5  |-  0  e.  RR*
261rexri 8079 . . . . 5  |-  pi  e.  RR*
27 0re 8021 . . . . . . 7  |-  0  e.  RR
28 pipos 14964 . . . . . . 7  |-  0  <  pi
2927, 1, 28ltleii 8124 . . . . . 6  |-  0  <_  pi
3029a1i 9 . . . . 5  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  0  <_  pi )
31 lbicc2 10053 . . . . 5  |-  ( ( 0  e.  RR*  /\  pi  e.  RR*  /\  0  <_  pi )  ->  0  e.  ( 0 [,] pi ) )
3225, 26, 30, 31mp3an12i 1352 . . . 4  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  0  e.  ( 0 [,] pi ) )
333a1i 9 . . . . . . 7  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  (
2  x.  pi )  e.  RR )
347, 33resubcld 8402 . . . . . 6  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( A  -  ( 2  x.  pi ) )  e.  RR )
3534renegcld 8401 . . . . 5  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  -u ( A  -  ( 2  x.  pi ) )  e.  RR )
3627a1i 9 . . . . . 6  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  0  e.  RR )
376simp3bi 1016 . . . . . . . 8  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  A  <  ( 2  x.  pi ) )
387, 33posdifd 8553 . . . . . . . 8  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( A  <  ( 2  x.  pi )  <->  0  <  ( ( 2  x.  pi )  -  A )
) )
3937, 38mpbid 147 . . . . . . 7  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  0  <  ( ( 2  x.  pi )  -  A
) )
408, 12negsubdi2d 8348 . . . . . . 7  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  -u ( A  -  ( 2  x.  pi ) )  =  ( ( 2  x.  pi )  -  A ) )
4139, 40breqtrrd 4058 . . . . . 6  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  0  <  -u ( A  -  ( 2  x.  pi ) ) )
4236, 35, 41ltled 8140 . . . . 5  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  0  <_ 
-u ( A  -  ( 2  x.  pi ) ) )
431a1i 9 . . . . . . 7  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  pi  e.  RR )
44 ax-1cn 7967 . . . . . . . . . 10  |-  1  e.  CC
459, 44, 10subdiri 8429 . . . . . . . . 9  |-  ( ( 2  -  1 )  x.  pi )  =  ( ( 2  x.  pi )  -  (
1  x.  pi ) )
46 2m1e1 9102 . . . . . . . . . . 11  |-  ( 2  -  1 )  =  1
4746oveq1i 5929 . . . . . . . . . 10  |-  ( ( 2  -  1 )  x.  pi )  =  ( 1  x.  pi )
4810mullidi 8024 . . . . . . . . . 10  |-  ( 1  x.  pi )  =  pi
4947, 48eqtri 2214 . . . . . . . . 9  |-  ( ( 2  -  1 )  x.  pi )  =  pi
5048oveq2i 5930 . . . . . . . . 9  |-  ( ( 2  x.  pi )  -  ( 1  x.  pi ) )  =  ( ( 2  x.  pi )  -  pi )
5145, 49, 503eqtr3ri 2223 . . . . . . . 8  |-  ( ( 2  x.  pi )  -  pi )  =  pi
526simp2bi 1015 . . . . . . . 8  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  pi  <_  A )
5351, 52eqbrtrid 4065 . . . . . . 7  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  (
( 2  x.  pi )  -  pi )  <_  A )
5433, 43, 7, 53subled 8569 . . . . . 6  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  (
( 2  x.  pi )  -  A )  <_  pi )
5540, 54eqbrtrd 4052 . . . . 5  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  -u ( A  -  ( 2  x.  pi ) )  <_  pi )
5627, 1elicc2i 10008 . . . . 5  |-  ( -u ( A  -  (
2  x.  pi ) )  e.  ( 0 [,] pi )  <->  ( -u ( A  -  ( 2  x.  pi ) )  e.  RR  /\  0  <_ 
-u ( A  -  ( 2  x.  pi ) )  /\  -u ( A  -  ( 2  x.  pi ) )  <_  pi ) )
5735, 42, 55, 56syl3anbrc 1183 . . . 4  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  -u ( A  -  ( 2  x.  pi ) )  e.  ( 0 [,] pi ) )
5832, 57, 41cosordlem 15025 . . 3  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( cos `  -u ( A  -  ( 2  x.  pi ) ) )  < 
( cos `  0
) )
59 cos0 11876 . . 3  |-  ( cos `  0 )  =  1
6058, 59breqtrdi 4071 . 2  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( cos `  -u ( A  -  ( 2  x.  pi ) ) )  <  1 )
6124, 60eqbrtrrd 4054 1  |-  ( A  e.  ( pi [,) ( 2  x.  pi ) )  ->  ( cos `  A )  <  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879   RR*cxr 8055    < clt 8056    <_ cle 8057    - cmin 8192   -ucneg 8193   2c2 9035   ZZcz 9320   [,)cico 9959   [,]cicc 9960   cosccos 11791   picpi 11793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-pre-suploc 7995  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-disj 4008  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-of 6132  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-map 6706  df-pm 6707  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-ioo 9961  df-ioc 9962  df-ico 9963  df-icc 9964  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-bc 10822  df-ihash 10850  df-shft 10962  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ef 11794  df-sin 11796  df-cos 11797  df-pi 11799  df-rest 12855  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-ntr 14275  df-cn 14367  df-cnp 14368  df-tx 14432  df-cncf 14750  df-limced 14835  df-dvap 14836
This theorem is referenced by:  cos02pilt1  15027
  Copyright terms: Public domain W3C validator