ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cosq23lt0 Unicode version

Theorem cosq23lt0 12930
Description: The cosine of a number in the second and third quadrants is negative. (Contributed by Jim Kingdon, 14-Mar-2024.)
Assertion
Ref Expression
cosq23lt0  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  ( cos `  A )  <  0 )

Proof of Theorem cosq23lt0
StepHypRef Expression
1 elioore 9702 . . . 4  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  A  e.  RR )
21recnd 7801 . . 3  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  A  e.  CC )
3 sinhalfpip 12917 . . 3  |-  ( A  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  +  A ) )  =  ( cos `  A
) )
42, 3syl 14 . 2  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  ( sin `  ( ( pi 
/  2 )  +  A ) )  =  ( cos `  A
) )
5 halfpire 12889 . . . . . 6  |-  ( pi 
/  2 )  e.  RR
65a1i 9 . . . . 5  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
pi  /  2 )  e.  RR )
76, 1readdcld 7802 . . . 4  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
( pi  /  2
)  +  A )  e.  RR )
8 pidiv2halves 12892 . . . . 5  |-  ( ( pi  /  2 )  +  ( pi  / 
2 ) )  =  pi
95rexri 7830 . . . . . . . 8  |-  ( pi 
/  2 )  e. 
RR*
10 3re 8801 . . . . . . . . . 10  |-  3  e.  RR
1110, 5remulcli 7787 . . . . . . . . 9  |-  ( 3  x.  ( pi  / 
2 ) )  e.  RR
1211rexri 7830 . . . . . . . 8  |-  ( 3  x.  ( pi  / 
2 ) )  e. 
RR*
13 elioo2 9711 . . . . . . . 8  |-  ( ( ( pi  /  2
)  e.  RR*  /\  (
3  x.  ( pi 
/  2 ) )  e.  RR* )  ->  ( A  e.  ( (
pi  /  2 ) (,) ( 3  x.  ( pi  /  2
) ) )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  ( 3  x.  ( pi 
/  2 ) ) ) ) )
149, 12, 13mp2an 422 . . . . . . 7  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  <->  ( A  e.  RR  /\  ( pi 
/  2 )  < 
A  /\  A  <  ( 3  x.  ( pi 
/  2 ) ) ) )
1514simp2bi 997 . . . . . 6  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
pi  /  2 )  <  A )
166, 1, 6, 15ltadd2dd 8191 . . . . 5  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
( pi  /  2
)  +  ( pi 
/  2 ) )  <  ( ( pi 
/  2 )  +  A ) )
178, 16eqbrtrrid 3964 . . . 4  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  pi  <  ( ( pi  / 
2 )  +  A
) )
1811a1i 9 . . . . . 6  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
3  x.  ( pi 
/  2 ) )  e.  RR )
1914simp3bi 998 . . . . . 6  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  A  <  ( 3  x.  (
pi  /  2 ) ) )
201, 18, 6, 19ltadd2dd 8191 . . . . 5  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
( pi  /  2
)  +  A )  <  ( ( pi 
/  2 )  +  ( 3  x.  (
pi  /  2 ) ) ) )
21 ax-1cn 7720 . . . . . . . 8  |-  1  e.  CC
22 3cn 8802 . . . . . . . 8  |-  3  e.  CC
235recni 7785 . . . . . . . 8  |-  ( pi 
/  2 )  e.  CC
2421, 22, 23adddiri 7784 . . . . . . 7  |-  ( ( 1  +  3 )  x.  ( pi  / 
2 ) )  =  ( ( 1  x.  ( pi  /  2
) )  +  ( 3  x.  ( pi 
/  2 ) ) )
25 3p1e4 8862 . . . . . . . . 9  |-  ( 3  +  1 )  =  4
2622, 21, 25addcomli 7914 . . . . . . . 8  |-  ( 1  +  3 )  =  4
2726oveq1i 5784 . . . . . . 7  |-  ( ( 1  +  3 )  x.  ( pi  / 
2 ) )  =  ( 4  x.  (
pi  /  2 ) )
2823mulid2i 7776 . . . . . . . 8  |-  ( 1  x.  ( pi  / 
2 ) )  =  ( pi  /  2
)
2928oveq1i 5784 . . . . . . 7  |-  ( ( 1  x.  ( pi 
/  2 ) )  +  ( 3  x.  ( pi  /  2
) ) )  =  ( ( pi  / 
2 )  +  ( 3  x.  ( pi 
/  2 ) ) )
3024, 27, 293eqtr3ri 2169 . . . . . 6  |-  ( ( pi  /  2 )  +  ( 3  x.  ( pi  /  2
) ) )  =  ( 4  x.  (
pi  /  2 ) )
31 4cn 8805 . . . . . . 7  |-  4  e.  CC
32 2cn 8798 . . . . . . . 8  |-  2  e.  CC
33 2ap0 8820 . . . . . . . 8  |-  2 #  0
3432, 33pm3.2i 270 . . . . . . 7  |-  ( 2  e.  CC  /\  2 #  0 )
35 picn 12884 . . . . . . 7  |-  pi  e.  CC
36 div32ap 8459 . . . . . . 7  |-  ( ( 4  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 )  /\  pi  e.  CC )  -> 
( ( 4  / 
2 )  x.  pi )  =  ( 4  x.  ( pi  / 
2 ) ) )
3731, 34, 35, 36mp3an 1315 . . . . . 6  |-  ( ( 4  /  2 )  x.  pi )  =  ( 4  x.  (
pi  /  2 ) )
38 4d2e2 8887 . . . . . . 7  |-  ( 4  /  2 )  =  2
3938oveq1i 5784 . . . . . 6  |-  ( ( 4  /  2 )  x.  pi )  =  ( 2  x.  pi )
4030, 37, 393eqtr2i 2166 . . . . 5  |-  ( ( pi  /  2 )  +  ( 3  x.  ( pi  /  2
) ) )  =  ( 2  x.  pi )
4120, 40breqtrdi 3969 . . . 4  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
( pi  /  2
)  +  A )  <  ( 2  x.  pi ) )
42 pire 12883 . . . . . 6  |-  pi  e.  RR
4342rexri 7830 . . . . 5  |-  pi  e.  RR*
44 2re 8797 . . . . . . 7  |-  2  e.  RR
4544, 42remulcli 7787 . . . . . 6  |-  ( 2  x.  pi )  e.  RR
4645rexri 7830 . . . . 5  |-  ( 2  x.  pi )  e. 
RR*
47 elioo2 9711 . . . . 5  |-  ( ( pi  e.  RR*  /\  (
2  x.  pi )  e.  RR* )  ->  (
( ( pi  / 
2 )  +  A
)  e.  ( pi
(,) ( 2  x.  pi ) )  <->  ( (
( pi  /  2
)  +  A )  e.  RR  /\  pi  <  ( ( pi  / 
2 )  +  A
)  /\  ( (
pi  /  2 )  +  A )  < 
( 2  x.  pi ) ) ) )
4843, 46, 47mp2an 422 . . . 4  |-  ( ( ( pi  /  2
)  +  A )  e.  ( pi (,) ( 2  x.  pi ) )  <->  ( (
( pi  /  2
)  +  A )  e.  RR  /\  pi  <  ( ( pi  / 
2 )  +  A
)  /\  ( (
pi  /  2 )  +  A )  < 
( 2  x.  pi ) ) )
497, 17, 41, 48syl3anbrc 1165 . . 3  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  (
( pi  /  2
)  +  A )  e.  ( pi (,) ( 2  x.  pi ) ) )
50 sinq34lt0t 12928 . . 3  |-  ( ( ( pi  /  2
)  +  A )  e.  ( pi (,) ( 2  x.  pi ) )  ->  ( sin `  ( ( pi 
/  2 )  +  A ) )  <  0 )
5149, 50syl 14 . 2  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  ( sin `  ( ( pi 
/  2 )  +  A ) )  <  0 )
524, 51eqbrtrrd 3952 1  |-  ( A  e.  ( ( pi 
/  2 ) (,) ( 3  x.  (
pi  /  2 ) ) )  ->  ( cos `  A )  <  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7625   RRcr 7626   0cc0 7627   1c1 7628    + caddc 7630    x. cmul 7632   RR*cxr 7806    < clt 7807   # cap 8350    / cdiv 8439   2c2 8778   3c3 8779   4c4 8780   (,)cioo 9678   sincsin 11357   cosccos 11358   picpi 11360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747  ax-pre-suploc 7748  ax-addf 7749  ax-mulf 7750
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-5 8789  df-6 8790  df-7 8791  df-8 8792  df-9 8793  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-xneg 9566  df-xadd 9567  df-ioo 9682  df-ioc 9683  df-ico 9684  df-icc 9685  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-fac 10479  df-bc 10501  df-ihash 10529  df-shft 10594  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130  df-ef 11361  df-sin 11363  df-cos 11364  df-pi 11366  df-rest 12131  df-topgen 12150  df-psmet 12165  df-xmet 12166  df-met 12167  df-bl 12168  df-mopn 12169  df-top 12174  df-topon 12187  df-bases 12219  df-ntr 12274  df-cn 12366  df-cnp 12367  df-tx 12431  df-cncf 12736  df-limced 12803  df-dvap 12804
This theorem is referenced by:  coseq0q4123  12931  cos02pilt1  12948
  Copyright terms: Public domain W3C validator