ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdm2 Unicode version

Theorem resdm2 5160
Description: A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
resdm2  |-  ( A  |`  dom  A )  =  `' `' A

Proof of Theorem resdm2
StepHypRef Expression
1 rescnvcnv 5132 . 2  |-  ( `' `' A  |`  dom  `' `' A )  =  ( A  |`  dom  `' `' A )
2 relcnv 5047 . . 3  |-  Rel  `' `' A
3 resdm 4985 . . 3  |-  ( Rel  `' `' A  ->  ( `' `' A  |`  dom  `' `' A )  =  `' `' A )
42, 3ax-mp 5 . 2  |-  ( `' `' A  |`  dom  `' `' A )  =  `' `' A
5 dmcnvcnv 4890 . . 3  |-  dom  `' `' A  =  dom  A
65reseq2i 4943 . 2  |-  ( A  |`  dom  `' `' A
)  =  ( A  |`  dom  A )
71, 4, 63eqtr3ri 2226 1  |-  ( A  |`  dom  A )  =  `' `' A
Colors of variables: wff set class
Syntax hints:    = wceq 1364   `'ccnv 4662   dom cdm 4663    |` cres 4665   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675
This theorem is referenced by:  resdmres  5161
  Copyright terms: Public domain W3C validator