ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdm2 Unicode version

Theorem resdm2 5137
Description: A class restricted to its domain equals its double converse. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
resdm2  |-  ( A  |`  dom  A )  =  `' `' A

Proof of Theorem resdm2
StepHypRef Expression
1 rescnvcnv 5109 . 2  |-  ( `' `' A  |`  dom  `' `' A )  =  ( A  |`  dom  `' `' A )
2 relcnv 5024 . . 3  |-  Rel  `' `' A
3 resdm 4964 . . 3  |-  ( Rel  `' `' A  ->  ( `' `' A  |`  dom  `' `' A )  =  `' `' A )
42, 3ax-mp 5 . 2  |-  ( `' `' A  |`  dom  `' `' A )  =  `' `' A
5 dmcnvcnv 4869 . . 3  |-  dom  `' `' A  =  dom  A
65reseq2i 4922 . 2  |-  ( A  |`  dom  `' `' A
)  =  ( A  |`  dom  A )
71, 4, 63eqtr3ri 2219 1  |-  ( A  |`  dom  A )  =  `' `' A
Colors of variables: wff set class
Syntax hints:    = wceq 1364   `'ccnv 4643   dom cdm 4644    |` cres 4646   Rel wrel 4649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-xp 4650  df-rel 4651  df-cnv 4652  df-dm 4654  df-rn 4655  df-res 4656
This theorem is referenced by:  resdmres  5138
  Copyright terms: Public domain W3C validator