| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3pm3.2i | Unicode version | ||
| Description: Infer conjunction of premises. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| 3pm3.2i.1 |
|
| 3pm3.2i.2 |
|
| 3pm3.2i.3 |
|
| Ref | Expression |
|---|---|
| 3pm3.2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3pm3.2i.1 |
. . 3
| |
| 2 | 3pm3.2i.2 |
. . 3
| |
| 3 | 1, 2 | pm3.2i 272 |
. 2
|
| 4 | 3pm3.2i.3 |
. 2
| |
| 5 | df-3an 982 |
. 2
| |
| 6 | 3, 4, 5 | mpbir2an 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mpbir3an 1181 3jaoi 1314 ftp 5750 4bc2eq6 10885 halfleoddlt 12078 strleun 12809 strle1g 12811 slotstnscsi 12899 slotsdnscsi 12927 slotsdifunifndx 12936 2irrexpqap 15322 lgslem2 15350 lgsdir2lem2 15378 lgsdir2lem3 15379 ex-dvds 15484 nconstwlpolem0 15820 |
| Copyright terms: Public domain | W3C validator |