ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotstnscsi Unicode version

Theorem slotstnscsi 12897
Description: The slots Scalar,  .s and  .i are different from the slot TopSet. (Contributed by AV, 29-Oct-2024.)
Assertion
Ref Expression
slotstnscsi  |-  ( (TopSet `  ndx )  =/=  (Scalar ` 
ndx )  /\  (TopSet ` 
ndx )  =/=  ( .s `  ndx )  /\  (TopSet `  ndx )  =/=  ( .i `  ndx ) )

Proof of Theorem slotstnscsi
StepHypRef Expression
1 5re 9086 . . . 4  |-  5  e.  RR
2 5lt9 9208 . . . 4  |-  5  <  9
31, 2gtneii 8139 . . 3  |-  9  =/=  5
4 tsetndx 12888 . . . 4  |-  (TopSet `  ndx )  =  9
5 scandx 12853 . . . 4  |-  (Scalar `  ndx )  =  5
64, 5neeq12i 2384 . . 3  |-  ( (TopSet `  ndx )  =/=  (Scalar ` 
ndx )  <->  9  =/=  5 )
73, 6mpbir 146 . 2  |-  (TopSet `  ndx )  =/=  (Scalar ` 
ndx )
8 6re 9088 . . . 4  |-  6  e.  RR
9 6lt9 9207 . . . 4  |-  6  <  9
108, 9gtneii 8139 . . 3  |-  9  =/=  6
11 vscandx 12859 . . . 4  |-  ( .s
`  ndx )  =  6
124, 11neeq12i 2384 . . 3  |-  ( (TopSet `  ndx )  =/=  ( .s `  ndx )  <->  9  =/=  6 )
1310, 12mpbir 146 . 2  |-  (TopSet `  ndx )  =/=  ( .s `  ndx )
14 8re 9092 . . . 4  |-  8  e.  RR
15 8lt9 9205 . . . 4  |-  8  <  9
1614, 15gtneii 8139 . . 3  |-  9  =/=  8
17 ipndx 12871 . . . 4  |-  ( .i
`  ndx )  =  8
184, 17neeq12i 2384 . . 3  |-  ( (TopSet `  ndx )  =/=  ( .i `  ndx )  <->  9  =/=  8 )
1916, 18mpbir 146 . 2  |-  (TopSet `  ndx )  =/=  ( .i `  ndx )
207, 13, 193pm3.2i 1177 1  |-  ( (TopSet `  ndx )  =/=  (Scalar ` 
ndx )  /\  (TopSet ` 
ndx )  =/=  ( .s `  ndx )  /\  (TopSet `  ndx )  =/=  ( .i `  ndx ) )
Colors of variables: wff set class
Syntax hints:    /\ w3a 980    =/= wne 2367   ` cfv 5259   5c5 9061   6c6 9062   8c8 9064   9c9 9065   ndxcnx 12700  Scalarcsca 12783   .scvsca 12784   .icip 12785  TopSetcts 12786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-ndx 12706  df-slot 12707  df-sca 12796  df-vsca 12797  df-ip 12798  df-tset 12799
This theorem is referenced by:  sratsetg  14077
  Copyright terms: Public domain W3C validator