ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotstnscsi Unicode version

Theorem slotstnscsi 12589
Description: The slots Scalar,  .s and  .i are different from the slot TopSet. (Contributed by AV, 29-Oct-2024.)
Assertion
Ref Expression
slotstnscsi  |-  ( (TopSet `  ndx )  =/=  (Scalar ` 
ndx )  /\  (TopSet ` 
ndx )  =/=  ( .s `  ndx )  /\  (TopSet `  ndx )  =/=  ( .i `  ndx ) )

Proof of Theorem slotstnscsi
StepHypRef Expression
1 5re 8969 . . . 4  |-  5  e.  RR
2 5lt9 9090 . . . 4  |-  5  <  9
31, 2gtneii 8027 . . 3  |-  9  =/=  5
4 tsetndx 12580 . . . 4  |-  (TopSet `  ndx )  =  9
5 scandx 12556 . . . 4  |-  (Scalar `  ndx )  =  5
64, 5neeq12i 2362 . . 3  |-  ( (TopSet `  ndx )  =/=  (Scalar ` 
ndx )  <->  9  =/=  5 )
73, 6mpbir 146 . 2  |-  (TopSet `  ndx )  =/=  (Scalar ` 
ndx )
8 6re 8971 . . . 4  |-  6  e.  RR
9 6lt9 9089 . . . 4  |-  6  <  9
108, 9gtneii 8027 . . 3  |-  9  =/=  6
11 vscandx 12562 . . . 4  |-  ( .s
`  ndx )  =  6
124, 11neeq12i 2362 . . 3  |-  ( (TopSet `  ndx )  =/=  ( .s `  ndx )  <->  9  =/=  6 )
1310, 12mpbir 146 . 2  |-  (TopSet `  ndx )  =/=  ( .s `  ndx )
14 8re 8975 . . . 4  |-  8  e.  RR
15 8lt9 9087 . . . 4  |-  8  <  9
1614, 15gtneii 8027 . . 3  |-  9  =/=  8
17 ipndx 12570 . . . 4  |-  ( .i
`  ndx )  =  8
184, 17neeq12i 2362 . . 3  |-  ( (TopSet `  ndx )  =/=  ( .i `  ndx )  <->  9  =/=  8 )
1916, 18mpbir 146 . 2  |-  (TopSet `  ndx )  =/=  ( .i `  ndx )
207, 13, 193pm3.2i 1175 1  |-  ( (TopSet `  ndx )  =/=  (Scalar ` 
ndx )  /\  (TopSet ` 
ndx )  =/=  ( .s `  ndx )  /\  (TopSet `  ndx )  =/=  ( .i `  ndx ) )
Colors of variables: wff set class
Syntax hints:    /\ w3a 978    =/= wne 2345   ` cfv 5208   5c5 8944   6c6 8945   8c8 8947   9c9 8948   ndxcnx 12424  Scalarcsca 12494   .scvsca 12495   .icip 12496  TopSetcts 12497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-pre-ltirr 7898  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fv 5216  df-ov 5868  df-pnf 7968  df-mnf 7969  df-ltxr 7971  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-5 8952  df-6 8953  df-7 8954  df-8 8955  df-9 8956  df-ndx 12430  df-slot 12431  df-sca 12507  df-vsca 12508  df-ip 12509  df-tset 12510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator