ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotstnscsi Unicode version

Theorem slotstnscsi 13228
Description: The slots Scalar,  .s and  .i are different from the slot TopSet. (Contributed by AV, 29-Oct-2024.)
Assertion
Ref Expression
slotstnscsi  |-  ( (TopSet `  ndx )  =/=  (Scalar ` 
ndx )  /\  (TopSet ` 
ndx )  =/=  ( .s `  ndx )  /\  (TopSet `  ndx )  =/=  ( .i `  ndx ) )

Proof of Theorem slotstnscsi
StepHypRef Expression
1 5re 9189 . . . 4  |-  5  e.  RR
2 5lt9 9311 . . . 4  |-  5  <  9
31, 2gtneii 8242 . . 3  |-  9  =/=  5
4 tsetndx 13219 . . . 4  |-  (TopSet `  ndx )  =  9
5 scandx 13184 . . . 4  |-  (Scalar `  ndx )  =  5
64, 5neeq12i 2417 . . 3  |-  ( (TopSet `  ndx )  =/=  (Scalar ` 
ndx )  <->  9  =/=  5 )
73, 6mpbir 146 . 2  |-  (TopSet `  ndx )  =/=  (Scalar ` 
ndx )
8 6re 9191 . . . 4  |-  6  e.  RR
9 6lt9 9310 . . . 4  |-  6  <  9
108, 9gtneii 8242 . . 3  |-  9  =/=  6
11 vscandx 13190 . . . 4  |-  ( .s
`  ndx )  =  6
124, 11neeq12i 2417 . . 3  |-  ( (TopSet `  ndx )  =/=  ( .s `  ndx )  <->  9  =/=  6 )
1310, 12mpbir 146 . 2  |-  (TopSet `  ndx )  =/=  ( .s `  ndx )
14 8re 9195 . . . 4  |-  8  e.  RR
15 8lt9 9308 . . . 4  |-  8  <  9
1614, 15gtneii 8242 . . 3  |-  9  =/=  8
17 ipndx 13202 . . . 4  |-  ( .i
`  ndx )  =  8
184, 17neeq12i 2417 . . 3  |-  ( (TopSet `  ndx )  =/=  ( .i `  ndx )  <->  9  =/=  8 )
1916, 18mpbir 146 . 2  |-  (TopSet `  ndx )  =/=  ( .i `  ndx )
207, 13, 193pm3.2i 1199 1  |-  ( (TopSet `  ndx )  =/=  (Scalar ` 
ndx )  /\  (TopSet ` 
ndx )  =/=  ( .s `  ndx )  /\  (TopSet `  ndx )  =/=  ( .i `  ndx ) )
Colors of variables: wff set class
Syntax hints:    /\ w3a 1002    =/= wne 2400   ` cfv 5318   5c5 9164   6c6 9165   8c8 9167   9c9 9168   ndxcnx 13029  Scalarcsca 13113   .scvsca 13114   .icip 13115  TopSetcts 13116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-ndx 13035  df-slot 13036  df-sca 13126  df-vsca 13127  df-ip 13128  df-tset 13129
This theorem is referenced by:  sratsetg  14409
  Copyright terms: Public domain W3C validator