ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  halfleoddlt Unicode version

Theorem halfleoddlt 11627
Description: An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
halfleoddlt  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) )

Proof of Theorem halfleoddlt
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 odd2np1 11606 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2 0xr 7836 . . . . . . . . . . . 12  |-  0  e.  RR*
3 1re 7789 . . . . . . . . . . . . 13  |-  1  e.  RR
43rexri 7847 . . . . . . . . . . . 12  |-  1  e.  RR*
5 halfre 8957 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  e.  RR
65rexri 7847 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e. 
RR*
72, 4, 63pm3.2i 1160 . . . . . . . . . . 11  |-  ( 0  e.  RR*  /\  1  e.  RR*  /\  ( 1  /  2 )  e. 
RR* )
8 halfgt0 8959 . . . . . . . . . . . 12  |-  0  <  ( 1  /  2
)
9 halflt1 8961 . . . . . . . . . . . 12  |-  ( 1  /  2 )  <  1
108, 9pm3.2i 270 . . . . . . . . . . 11  |-  ( 0  <  ( 1  / 
2 )  /\  (
1  /  2 )  <  1 )
11 elioo3g 9723 . . . . . . . . . . 11  |-  ( ( 1  /  2 )  e.  ( 0 (,) 1 )  <->  ( (
0  e.  RR*  /\  1  e.  RR*  /\  ( 1  /  2 )  e. 
RR* )  /\  (
0  <  ( 1  /  2 )  /\  ( 1  /  2
)  <  1 ) ) )
127, 10, 11mpbir2an 927 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  ( 0 (,) 1
)
13 zltaddlt1le 9820 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ  /\  (
1  /  2 )  e.  ( 0 (,) 1 ) )  -> 
( ( n  +  ( 1  /  2
) )  <  M  <->  ( n  +  ( 1  /  2 ) )  <_  M ) )
1412, 13mp3an3 1305 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( n  +  ( 1  /  2
) )  <  M  <->  ( n  +  ( 1  /  2 ) )  <_  M ) )
15 zcn 9083 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  CC )
1615adantr 274 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  n  e.  CC )
17 1cnd 7806 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  1  e.  CC )
18 2cn 8815 . . . . . . . . . . . . 13  |-  2  e.  CC
19 2ap0 8837 . . . . . . . . . . . . 13  |-  2 #  0
2018, 19pm3.2i 270 . . . . . . . . . . . 12  |-  ( 2  e.  CC  /\  2 #  0 )
2120a1i 9 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  e.  CC  /\  2 #  0 ) )
22 muldivdirap 8491 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  1  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( ( 2  x.  n )  +  1 )  /  2
)  =  ( n  +  ( 1  / 
2 ) ) )
2316, 17, 21, 22syl3anc 1217 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  /  2
)  =  ( n  +  ( 1  / 
2 ) ) )
2423breq1d 3947 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <  M  <->  ( n  +  ( 1  /  2 ) )  <  M ) )
2523breq1d 3947 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <_  M  <->  ( n  +  ( 1  /  2 ) )  <_  M ) )
2614, 24, 253bitr4rd 220 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <_  M  <->  ( ( ( 2  x.  n )  +  1 )  /  2 )  <  M ) )
27 oveq1 5789 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  /  2 )  =  ( N  / 
2 ) )
2827breq1d 3947 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  /  2
)  <_  M  <->  ( N  /  2 )  <_  M ) )
2927breq1d 3947 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  /  2
)  <  M  <->  ( N  /  2 )  < 
M ) )
3028, 29bibi12d 234 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <_  M  <->  ( ( ( 2  x.  n )  +  1 )  /  2 )  <  M )  <->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) )
3126, 30syl5ibcom 154 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) )
3231ex 114 . . . . . 6  |-  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  -> 
( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) ) ) )
3332adantl 275 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) ) )
3433com23 78 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  e.  ZZ  ->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) ) )
3534rexlimdva 2552 . . 3  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  -> 
( M  e.  ZZ  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) ) ) )
361, 35sylbid 149 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( M  e.  ZZ  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) ) ) )
37363imp 1176 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   E.wrex 2418   class class class wbr 3937  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649   RR*cxr 7823    < clt 7824    <_ cle 7825   # cap 8367    / cdiv 8456   2c2 8795   ZZcz 9078   (,)cioo 9701    || cdvds 11529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-xor 1355  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-rp 9471  df-ioo 9705  df-dvds 11530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator