ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  halfleoddlt Unicode version

Theorem halfleoddlt 12035
Description: An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
halfleoddlt  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) )

Proof of Theorem halfleoddlt
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 odd2np1 12014 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2 0xr 8066 . . . . . . . . . . . 12  |-  0  e.  RR*
3 1re 8018 . . . . . . . . . . . . 13  |-  1  e.  RR
43rexri 8077 . . . . . . . . . . . 12  |-  1  e.  RR*
5 halfre 9195 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  e.  RR
65rexri 8077 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e. 
RR*
72, 4, 63pm3.2i 1177 . . . . . . . . . . 11  |-  ( 0  e.  RR*  /\  1  e.  RR*  /\  ( 1  /  2 )  e. 
RR* )
8 halfgt0 9197 . . . . . . . . . . . 12  |-  0  <  ( 1  /  2
)
9 halflt1 9199 . . . . . . . . . . . 12  |-  ( 1  /  2 )  <  1
108, 9pm3.2i 272 . . . . . . . . . . 11  |-  ( 0  <  ( 1  / 
2 )  /\  (
1  /  2 )  <  1 )
11 elioo3g 9976 . . . . . . . . . . 11  |-  ( ( 1  /  2 )  e.  ( 0 (,) 1 )  <->  ( (
0  e.  RR*  /\  1  e.  RR*  /\  ( 1  /  2 )  e. 
RR* )  /\  (
0  <  ( 1  /  2 )  /\  ( 1  /  2
)  <  1 ) ) )
127, 10, 11mpbir2an 944 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  ( 0 (,) 1
)
13 zltaddlt1le 10073 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ  /\  (
1  /  2 )  e.  ( 0 (,) 1 ) )  -> 
( ( n  +  ( 1  /  2
) )  <  M  <->  ( n  +  ( 1  /  2 ) )  <_  M ) )
1412, 13mp3an3 1337 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( n  +  ( 1  /  2
) )  <  M  <->  ( n  +  ( 1  /  2 ) )  <_  M ) )
15 zcn 9322 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  CC )
1615adantr 276 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  n  e.  CC )
17 1cnd 8035 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  1  e.  CC )
18 2cn 9053 . . . . . . . . . . . . 13  |-  2  e.  CC
19 2ap0 9075 . . . . . . . . . . . . 13  |-  2 #  0
2018, 19pm3.2i 272 . . . . . . . . . . . 12  |-  ( 2  e.  CC  /\  2 #  0 )
2120a1i 9 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  e.  CC  /\  2 #  0 ) )
22 muldivdirap 8726 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  1  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( ( 2  x.  n )  +  1 )  /  2
)  =  ( n  +  ( 1  / 
2 ) ) )
2316, 17, 21, 22syl3anc 1249 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  /  2
)  =  ( n  +  ( 1  / 
2 ) ) )
2423breq1d 4039 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <  M  <->  ( n  +  ( 1  /  2 ) )  <  M ) )
2523breq1d 4039 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <_  M  <->  ( n  +  ( 1  /  2 ) )  <_  M ) )
2614, 24, 253bitr4rd 221 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <_  M  <->  ( ( ( 2  x.  n )  +  1 )  /  2 )  <  M ) )
27 oveq1 5925 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  /  2 )  =  ( N  / 
2 ) )
2827breq1d 4039 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  /  2
)  <_  M  <->  ( N  /  2 )  <_  M ) )
2927breq1d 4039 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  /  2
)  <  M  <->  ( N  /  2 )  < 
M ) )
3028, 29bibi12d 235 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <_  M  <->  ( ( ( 2  x.  n )  +  1 )  /  2 )  <  M )  <->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) )
3126, 30syl5ibcom 155 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) )
3231ex 115 . . . . . 6  |-  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  -> 
( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) ) ) )
3332adantl 277 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) ) )
3433com23 78 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  e.  ZZ  ->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) ) )
3534rexlimdva 2611 . . 3  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  -> 
( M  e.  ZZ  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) ) ) )
361, 35sylbid 150 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( M  e.  ZZ  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) ) ) )
37363imp 1195 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029  (class class class)co 5918   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877   RR*cxr 8053    < clt 8054    <_ cle 8055   # cap 8600    / cdiv 8691   2c2 9033   ZZcz 9317   (,)cioo 9954    || cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-rp 9720  df-ioo 9958  df-dvds 11931
This theorem is referenced by:  gausslemma2dlem1a  15174
  Copyright terms: Public domain W3C validator