ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  halfleoddlt Unicode version

Theorem halfleoddlt 11866
Description: An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
halfleoddlt  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) )

Proof of Theorem halfleoddlt
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 odd2np1 11845 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2 0xr 7978 . . . . . . . . . . . 12  |-  0  e.  RR*
3 1re 7931 . . . . . . . . . . . . 13  |-  1  e.  RR
43rexri 7989 . . . . . . . . . . . 12  |-  1  e.  RR*
5 halfre 9105 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  e.  RR
65rexri 7989 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e. 
RR*
72, 4, 63pm3.2i 1175 . . . . . . . . . . 11  |-  ( 0  e.  RR*  /\  1  e.  RR*  /\  ( 1  /  2 )  e. 
RR* )
8 halfgt0 9107 . . . . . . . . . . . 12  |-  0  <  ( 1  /  2
)
9 halflt1 9109 . . . . . . . . . . . 12  |-  ( 1  /  2 )  <  1
108, 9pm3.2i 272 . . . . . . . . . . 11  |-  ( 0  <  ( 1  / 
2 )  /\  (
1  /  2 )  <  1 )
11 elioo3g 9881 . . . . . . . . . . 11  |-  ( ( 1  /  2 )  e.  ( 0 (,) 1 )  <->  ( (
0  e.  RR*  /\  1  e.  RR*  /\  ( 1  /  2 )  e. 
RR* )  /\  (
0  <  ( 1  /  2 )  /\  ( 1  /  2
)  <  1 ) ) )
127, 10, 11mpbir2an 942 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  ( 0 (,) 1
)
13 zltaddlt1le 9978 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ  /\  (
1  /  2 )  e.  ( 0 (,) 1 ) )  -> 
( ( n  +  ( 1  /  2
) )  <  M  <->  ( n  +  ( 1  /  2 ) )  <_  M ) )
1412, 13mp3an3 1326 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( n  +  ( 1  /  2
) )  <  M  <->  ( n  +  ( 1  /  2 ) )  <_  M ) )
15 zcn 9231 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  CC )
1615adantr 276 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  n  e.  CC )
17 1cnd 7948 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  1  e.  CC )
18 2cn 8963 . . . . . . . . . . . . 13  |-  2  e.  CC
19 2ap0 8985 . . . . . . . . . . . . 13  |-  2 #  0
2018, 19pm3.2i 272 . . . . . . . . . . . 12  |-  ( 2  e.  CC  /\  2 #  0 )
2120a1i 9 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  e.  CC  /\  2 #  0 ) )
22 muldivdirap 8637 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  1  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( ( 2  x.  n )  +  1 )  /  2
)  =  ( n  +  ( 1  / 
2 ) ) )
2316, 17, 21, 22syl3anc 1238 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  /  2
)  =  ( n  +  ( 1  / 
2 ) ) )
2423breq1d 4008 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <  M  <->  ( n  +  ( 1  /  2 ) )  <  M ) )
2523breq1d 4008 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <_  M  <->  ( n  +  ( 1  /  2 ) )  <_  M ) )
2614, 24, 253bitr4rd 221 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <_  M  <->  ( ( ( 2  x.  n )  +  1 )  /  2 )  <  M ) )
27 oveq1 5872 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  /  2 )  =  ( N  / 
2 ) )
2827breq1d 4008 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  /  2
)  <_  M  <->  ( N  /  2 )  <_  M ) )
2927breq1d 4008 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  /  2
)  <  M  <->  ( N  /  2 )  < 
M ) )
3028, 29bibi12d 235 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <_  M  <->  ( ( ( 2  x.  n )  +  1 )  /  2 )  <  M )  <->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) )
3126, 30syl5ibcom 155 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) )
3231ex 115 . . . . . 6  |-  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  -> 
( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) ) ) )
3332adantl 277 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) ) )
3433com23 78 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  e.  ZZ  ->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) ) )
3534rexlimdva 2592 . . 3  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  -> 
( M  e.  ZZ  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) ) ) )
361, 35sylbid 150 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( M  e.  ZZ  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) ) ) )
37363imp 1193 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2146   E.wrex 2454   class class class wbr 3998  (class class class)co 5865   CCcc 7784   0cc0 7786   1c1 7787    + caddc 7789    x. cmul 7791   RR*cxr 7965    < clt 7966    <_ cle 7967   # cap 8512    / cdiv 8602   2c2 8943   ZZcz 9226   (,)cioo 9859    || cdvds 11762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-n0 9150  df-z 9227  df-rp 9625  df-ioo 9863  df-dvds 11763
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator