ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  halfleoddlt Unicode version

Theorem halfleoddlt 11912
Description: An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
halfleoddlt  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) )

Proof of Theorem halfleoddlt
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 odd2np1 11891 . . 3  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
2 0xr 8017 . . . . . . . . . . . 12  |-  0  e.  RR*
3 1re 7969 . . . . . . . . . . . . 13  |-  1  e.  RR
43rexri 8028 . . . . . . . . . . . 12  |-  1  e.  RR*
5 halfre 9145 . . . . . . . . . . . . 13  |-  ( 1  /  2 )  e.  RR
65rexri 8028 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e. 
RR*
72, 4, 63pm3.2i 1176 . . . . . . . . . . 11  |-  ( 0  e.  RR*  /\  1  e.  RR*  /\  ( 1  /  2 )  e. 
RR* )
8 halfgt0 9147 . . . . . . . . . . . 12  |-  0  <  ( 1  /  2
)
9 halflt1 9149 . . . . . . . . . . . 12  |-  ( 1  /  2 )  <  1
108, 9pm3.2i 272 . . . . . . . . . . 11  |-  ( 0  <  ( 1  / 
2 )  /\  (
1  /  2 )  <  1 )
11 elioo3g 9923 . . . . . . . . . . 11  |-  ( ( 1  /  2 )  e.  ( 0 (,) 1 )  <->  ( (
0  e.  RR*  /\  1  e.  RR*  /\  ( 1  /  2 )  e. 
RR* )  /\  (
0  <  ( 1  /  2 )  /\  ( 1  /  2
)  <  1 ) ) )
127, 10, 11mpbir2an 943 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  ( 0 (,) 1
)
13 zltaddlt1le 10020 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ  /\  (
1  /  2 )  e.  ( 0 (,) 1 ) )  -> 
( ( n  +  ( 1  /  2
) )  <  M  <->  ( n  +  ( 1  /  2 ) )  <_  M ) )
1412, 13mp3an3 1336 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( n  +  ( 1  /  2
) )  <  M  <->  ( n  +  ( 1  /  2 ) )  <_  M ) )
15 zcn 9271 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  CC )
1615adantr 276 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  n  e.  CC )
17 1cnd 7986 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  1  e.  CC )
18 2cn 9003 . . . . . . . . . . . . 13  |-  2  e.  CC
19 2ap0 9025 . . . . . . . . . . . . 13  |-  2 #  0
2018, 19pm3.2i 272 . . . . . . . . . . . 12  |-  ( 2  e.  CC  /\  2 #  0 )
2120a1i 9 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( 2  e.  CC  /\  2 #  0 ) )
22 muldivdirap 8677 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  1  e.  CC  /\  (
2  e.  CC  /\  2 #  0 ) )  -> 
( ( ( 2  x.  n )  +  1 )  /  2
)  =  ( n  +  ( 1  / 
2 ) ) )
2316, 17, 21, 22syl3anc 1248 . . . . . . . . . 10  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  /  2
)  =  ( n  +  ( 1  / 
2 ) ) )
2423breq1d 4025 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <  M  <->  ( n  +  ( 1  /  2 ) )  <  M ) )
2523breq1d 4025 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <_  M  <->  ( n  +  ( 1  /  2 ) )  <_  M ) )
2614, 24, 253bitr4rd 221 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <_  M  <->  ( ( ( 2  x.  n )  +  1 )  /  2 )  <  M ) )
27 oveq1 5895 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  /  2 )  =  ( N  / 
2 ) )
2827breq1d 4025 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  /  2
)  <_  M  <->  ( N  /  2 )  <_  M ) )
2927breq1d 4025 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  /  2
)  <  M  <->  ( N  /  2 )  < 
M ) )
3028, 29bibi12d 235 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( ( 2  x.  n )  +  1 )  / 
2 )  <_  M  <->  ( ( ( 2  x.  n )  +  1 )  /  2 )  <  M )  <->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) )
3126, 30syl5ibcom 155 . . . . . . 7  |-  ( ( n  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) )
3231ex 115 . . . . . 6  |-  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  -> 
( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) ) ) )
3332adantl 277 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  e.  ZZ  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) ) )
3433com23 78 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  ->  ( M  e.  ZZ  ->  ( ( N  /  2 )  <_  M 
<->  ( N  /  2
)  <  M )
) ) )
3534rexlimdva 2604 . . 3  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  -> 
( M  e.  ZZ  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) ) ) )
361, 35sylbid 150 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  -> 
( M  e.  ZZ  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) ) ) )
37363imp 1194 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( ( N  / 
2 )  <_  M  <->  ( N  /  2 )  <  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158   E.wrex 2466   class class class wbr 4015  (class class class)co 5888   CCcc 7822   0cc0 7824   1c1 7825    + caddc 7827    x. cmul 7829   RR*cxr 8004    < clt 8005    <_ cle 8006   # cap 8551    / cdiv 8642   2c2 8983   ZZcz 9266   (,)cioo 9901    || cdvds 11807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-xor 1386  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-n0 9190  df-z 9267  df-rp 9667  df-ioo 9905  df-dvds 11808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator