ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotsdifunifndx Unicode version

Theorem slotsdifunifndx 12845
Description: The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.)
Assertion
Ref Expression
slotsdifunifndx  |-  ( ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet
`  ndx )  /\  (
*r `  ndx )  =/=  ( UnifSet `  ndx ) )  /\  (
( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) ) )

Proof of Theorem slotsdifunifndx
StepHypRef Expression
1 2re 9052 . . . . 5  |-  2  e.  RR
2 1nn 8993 . . . . . 6  |-  1  e.  NN
3 3nn0 9258 . . . . . 6  |-  3  e.  NN0
4 2nn0 9257 . . . . . 6  |-  2  e.  NN0
5 2lt10 9585 . . . . . 6  |-  2  < ; 1
0
62, 3, 4, 5declti 9485 . . . . 5  |-  2  < ; 1
3
71, 6ltneii 8116 . . . 4  |-  2  =/= ; 1 3
8 plusgndx 12727 . . . . 5  |-  ( +g  ` 
ndx )  =  2
9 unifndx 12839 . . . . 5  |-  ( UnifSet ` 
ndx )  = ; 1 3
108, 9neeq12i 2381 . . . 4  |-  ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  <->  2  =/= ; 1 3 )
117, 10mpbir 146 . . 3  |-  ( +g  ` 
ndx )  =/=  ( UnifSet
`  ndx )
12 3re 9056 . . . . 5  |-  3  e.  RR
13 3lt10 9584 . . . . . 6  |-  3  < ; 1
0
142, 3, 3, 13declti 9485 . . . . 5  |-  3  < ; 1
3
1512, 14ltneii 8116 . . . 4  |-  3  =/= ; 1 3
16 mulrndx 12747 . . . . 5  |-  ( .r
`  ndx )  =  3
1716, 9neeq12i 2381 . . . 4  |-  ( ( .r `  ndx )  =/=  ( UnifSet `  ndx )  <->  3  =/= ; 1 3 )
1815, 17mpbir 146 . . 3  |-  ( .r
`  ndx )  =/=  ( UnifSet
`  ndx )
19 4re 9059 . . . . 5  |-  4  e.  RR
20 4nn0 9259 . . . . . 6  |-  4  e.  NN0
21 4lt10 9583 . . . . . 6  |-  4  < ; 1
0
222, 3, 20, 21declti 9485 . . . . 5  |-  4  < ; 1
3
2319, 22ltneii 8116 . . . 4  |-  4  =/= ; 1 3
24 starvndx 12756 . . . . 5  |-  ( *r `  ndx )  =  4
2524, 9neeq12i 2381 . . . 4  |-  ( ( *r `  ndx )  =/=  ( UnifSet `  ndx ) 
<->  4  =/= ; 1 3 )
2623, 25mpbir 146 . . 3  |-  ( *r `  ndx )  =/=  ( UnifSet `  ndx )
2711, 18, 263pm3.2i 1177 . 2  |-  ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( *r `  ndx )  =/=  ( UnifSet
`  ndx ) )
28 10re 9466 . . . . 5  |- ; 1 0  e.  RR
29 1nn0 9256 . . . . . 6  |-  1  e.  NN0
30 0nn0 9255 . . . . . 6  |-  0  e.  NN0
31 3nn 9144 . . . . . 6  |-  3  e.  NN
32 3pos 9076 . . . . . 6  |-  0  <  3
3329, 30, 31, 32declt 9475 . . . . 5  |- ; 1 0  < ; 1 3
3428, 33ltneii 8116 . . . 4  |- ; 1 0  =/= ; 1 3
35 plendx 12817 . . . . 5  |-  ( le
`  ndx )  = ; 1 0
3635, 9neeq12i 2381 . . . 4  |-  ( ( le `  ndx )  =/=  ( UnifSet `  ndx )  <-> ; 1 0  =/= ; 1 3 )
3734, 36mpbir 146 . . 3  |-  ( le
`  ndx )  =/=  ( UnifSet
`  ndx )
38 2nn 9143 . . . . . . 7  |-  2  e.  NN
3929, 38decnncl 9467 . . . . . 6  |- ; 1 2  e.  NN
4039nnrei 8991 . . . . 5  |- ; 1 2  e.  RR
41 2lt3 9152 . . . . . 6  |-  2  <  3
4229, 4, 31, 41declt 9475 . . . . 5  |- ; 1 2  < ; 1 3
4340, 42ltneii 8116 . . . 4  |- ; 1 2  =/= ; 1 3
44 dsndx 12828 . . . . 5  |-  ( dist `  ndx )  = ; 1 2
4544, 9neeq12i 2381 . . . 4  |-  ( (
dist `  ndx )  =/=  ( UnifSet `  ndx )  <-> ; 1 2  =/= ; 1 3 )
4643, 45mpbir 146 . . 3  |-  ( dist `  ndx )  =/=  ( UnifSet
`  ndx )
4737, 46pm3.2i 272 . 2  |-  ( ( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) )
4827, 47pm3.2i 272 1  |-  ( ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet
`  ndx )  /\  (
*r `  ndx )  =/=  ( UnifSet `  ndx ) )  /\  (
( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 980    =/= wne 2364   ` cfv 5254   0cc0 7872   1c1 7873   2c2 9033   3c3 9034   4c4 9035  ;cdc 9448   ndxcnx 12615   +g cplusg 12695   .rcmulr 12696   *rcstv 12697   lecple 12702   distcds 12704   UnifSetcunif 12705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-ndx 12621  df-slot 12622  df-plusg 12708  df-mulr 12709  df-starv 12710  df-ple 12715  df-ds 12717  df-unif 12718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator