![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > slotsdifunifndx | Unicode version |
Description: The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.) |
Ref | Expression |
---|---|
slotsdifunifndx |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 9052 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | 1nn 8993 |
. . . . . 6
![]() ![]() ![]() ![]() | |
3 | 3nn0 9258 |
. . . . . 6
![]() ![]() ![]() ![]() | |
4 | 2nn0 9257 |
. . . . . 6
![]() ![]() ![]() ![]() | |
5 | 2lt10 9585 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() | |
6 | 2, 3, 4, 5 | declti 9485 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | ltneii 8116 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
8 | plusgndx 12727 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | unifndx 12839 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 8, 9 | neeq12i 2381 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 7, 10 | mpbir 146 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 3re 9056 |
. . . . 5
![]() ![]() ![]() ![]() | |
13 | 3lt10 9584 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() | |
14 | 2, 3, 3, 13 | declti 9485 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
15 | 12, 14 | ltneii 8116 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
16 | mulrndx 12747 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | 16, 9 | neeq12i 2381 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 15, 17 | mpbir 146 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 4re 9059 |
. . . . 5
![]() ![]() ![]() ![]() | |
20 | 4nn0 9259 |
. . . . . 6
![]() ![]() ![]() ![]() | |
21 | 4lt10 9583 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() | |
22 | 2, 3, 20, 21 | declti 9485 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
23 | 19, 22 | ltneii 8116 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
24 | starvndx 12756 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
25 | 24, 9 | neeq12i 2381 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 23, 25 | mpbir 146 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 11, 18, 26 | 3pm3.2i 1177 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 10re 9466 |
. . . . 5
![]() ![]() ![]() ![]() ![]() | |
29 | 1nn0 9256 |
. . . . . 6
![]() ![]() ![]() ![]() | |
30 | 0nn0 9255 |
. . . . . 6
![]() ![]() ![]() ![]() | |
31 | 3nn 9144 |
. . . . . 6
![]() ![]() ![]() ![]() | |
32 | 3pos 9076 |
. . . . . 6
![]() ![]() ![]() ![]() | |
33 | 29, 30, 31, 32 | declt 9475 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
34 | 28, 33 | ltneii 8116 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
35 | plendx 12817 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
36 | 35, 9 | neeq12i 2381 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 34, 36 | mpbir 146 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
38 | 2nn 9143 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
39 | 29, 38 | decnncl 9467 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
40 | 39 | nnrei 8991 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
41 | 2lt3 9152 |
. . . . . 6
![]() ![]() ![]() ![]() | |
42 | 29, 4, 31, 41 | declt 9475 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
43 | 40, 42 | ltneii 8116 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
44 | dsndx 12828 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
45 | 44, 9 | neeq12i 2381 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
46 | 43, 45 | mpbir 146 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
47 | 37, 46 | pm3.2i 272 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
48 | 27, 47 | pm3.2i 272 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-dec 9449 df-ndx 12621 df-slot 12622 df-plusg 12708 df-mulr 12709 df-starv 12710 df-ple 12715 df-ds 12717 df-unif 12718 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |