ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotsdifunifndx Unicode version

Theorem slotsdifunifndx 13265
Description: The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.)
Assertion
Ref Expression
slotsdifunifndx  |-  ( ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet
`  ndx )  /\  (
*r `  ndx )  =/=  ( UnifSet `  ndx ) )  /\  (
( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) ) )

Proof of Theorem slotsdifunifndx
StepHypRef Expression
1 2re 9180 . . . . 5  |-  2  e.  RR
2 1nn 9121 . . . . . 6  |-  1  e.  NN
3 3nn0 9387 . . . . . 6  |-  3  e.  NN0
4 2nn0 9386 . . . . . 6  |-  2  e.  NN0
5 2lt10 9715 . . . . . 6  |-  2  < ; 1
0
62, 3, 4, 5declti 9615 . . . . 5  |-  2  < ; 1
3
71, 6ltneii 8243 . . . 4  |-  2  =/= ; 1 3
8 plusgndx 13142 . . . . 5  |-  ( +g  ` 
ndx )  =  2
9 unifndx 13259 . . . . 5  |-  ( UnifSet ` 
ndx )  = ; 1 3
108, 9neeq12i 2417 . . . 4  |-  ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  <->  2  =/= ; 1 3 )
117, 10mpbir 146 . . 3  |-  ( +g  ` 
ndx )  =/=  ( UnifSet
`  ndx )
12 3re 9184 . . . . 5  |-  3  e.  RR
13 3lt10 9714 . . . . . 6  |-  3  < ; 1
0
142, 3, 3, 13declti 9615 . . . . 5  |-  3  < ; 1
3
1512, 14ltneii 8243 . . . 4  |-  3  =/= ; 1 3
16 mulrndx 13163 . . . . 5  |-  ( .r
`  ndx )  =  3
1716, 9neeq12i 2417 . . . 4  |-  ( ( .r `  ndx )  =/=  ( UnifSet `  ndx )  <->  3  =/= ; 1 3 )
1815, 17mpbir 146 . . 3  |-  ( .r
`  ndx )  =/=  ( UnifSet
`  ndx )
19 4re 9187 . . . . 5  |-  4  e.  RR
20 4nn0 9388 . . . . . 6  |-  4  e.  NN0
21 4lt10 9713 . . . . . 6  |-  4  < ; 1
0
222, 3, 20, 21declti 9615 . . . . 5  |-  4  < ; 1
3
2319, 22ltneii 8243 . . . 4  |-  4  =/= ; 1 3
24 starvndx 13172 . . . . 5  |-  ( *r `  ndx )  =  4
2524, 9neeq12i 2417 . . . 4  |-  ( ( *r `  ndx )  =/=  ( UnifSet `  ndx ) 
<->  4  =/= ; 1 3 )
2623, 25mpbir 146 . . 3  |-  ( *r `  ndx )  =/=  ( UnifSet `  ndx )
2711, 18, 263pm3.2i 1199 . 2  |-  ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( *r `  ndx )  =/=  ( UnifSet
`  ndx ) )
28 10re 9596 . . . . 5  |- ; 1 0  e.  RR
29 1nn0 9385 . . . . . 6  |-  1  e.  NN0
30 0nn0 9384 . . . . . 6  |-  0  e.  NN0
31 3nn 9273 . . . . . 6  |-  3  e.  NN
32 3pos 9204 . . . . . 6  |-  0  <  3
3329, 30, 31, 32declt 9605 . . . . 5  |- ; 1 0  < ; 1 3
3428, 33ltneii 8243 . . . 4  |- ; 1 0  =/= ; 1 3
35 plendx 13233 . . . . 5  |-  ( le
`  ndx )  = ; 1 0
3635, 9neeq12i 2417 . . . 4  |-  ( ( le `  ndx )  =/=  ( UnifSet `  ndx )  <-> ; 1 0  =/= ; 1 3 )
3734, 36mpbir 146 . . 3  |-  ( le
`  ndx )  =/=  ( UnifSet
`  ndx )
38 2nn 9272 . . . . . . 7  |-  2  e.  NN
3929, 38decnncl 9597 . . . . . 6  |- ; 1 2  e.  NN
4039nnrei 9119 . . . . 5  |- ; 1 2  e.  RR
41 2lt3 9281 . . . . . 6  |-  2  <  3
4229, 4, 31, 41declt 9605 . . . . 5  |- ; 1 2  < ; 1 3
4340, 42ltneii 8243 . . . 4  |- ; 1 2  =/= ; 1 3
44 dsndx 13248 . . . . 5  |-  ( dist `  ndx )  = ; 1 2
4544, 9neeq12i 2417 . . . 4  |-  ( (
dist `  ndx )  =/=  ( UnifSet `  ndx )  <-> ; 1 2  =/= ; 1 3 )
4643, 45mpbir 146 . . 3  |-  ( dist `  ndx )  =/=  ( UnifSet
`  ndx )
4737, 46pm3.2i 272 . 2  |-  ( ( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) )
4827, 47pm3.2i 272 1  |-  ( ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet
`  ndx )  /\  (
*r `  ndx )  =/=  ( UnifSet `  ndx ) )  /\  (
( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 1002    =/= wne 2400   ` cfv 5318   0cc0 7999   1c1 8000   2c2 9161   3c3 9162   4c4 9163  ;cdc 9578   ndxcnx 13029   +g cplusg 13110   .rcmulr 13111   *rcstv 13112   lecple 13117   distcds 13119   UnifSetcunif 13120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-dec 9579  df-ndx 13035  df-slot 13036  df-plusg 13123  df-mulr 13124  df-starv 13125  df-ple 13130  df-ds 13132  df-unif 13133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator