ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotsdifunifndx Unicode version

Theorem slotsdifunifndx 12688
Description: The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.)
Assertion
Ref Expression
slotsdifunifndx  |-  ( ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet
`  ndx )  /\  (
*r `  ndx )  =/=  ( UnifSet `  ndx ) )  /\  (
( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) ) )

Proof of Theorem slotsdifunifndx
StepHypRef Expression
1 2re 8991 . . . . 5  |-  2  e.  RR
2 1nn 8932 . . . . . 6  |-  1  e.  NN
3 3nn0 9196 . . . . . 6  |-  3  e.  NN0
4 2nn0 9195 . . . . . 6  |-  2  e.  NN0
5 2lt10 9523 . . . . . 6  |-  2  < ; 1
0
62, 3, 4, 5declti 9423 . . . . 5  |-  2  < ; 1
3
71, 6ltneii 8056 . . . 4  |-  2  =/= ; 1 3
8 plusgndx 12570 . . . . 5  |-  ( +g  ` 
ndx )  =  2
9 unifndx 12682 . . . . 5  |-  ( UnifSet ` 
ndx )  = ; 1 3
108, 9neeq12i 2364 . . . 4  |-  ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  <->  2  =/= ; 1 3 )
117, 10mpbir 146 . . 3  |-  ( +g  ` 
ndx )  =/=  ( UnifSet
`  ndx )
12 3re 8995 . . . . 5  |-  3  e.  RR
13 3lt10 9522 . . . . . 6  |-  3  < ; 1
0
142, 3, 3, 13declti 9423 . . . . 5  |-  3  < ; 1
3
1512, 14ltneii 8056 . . . 4  |-  3  =/= ; 1 3
16 mulrndx 12590 . . . . 5  |-  ( .r
`  ndx )  =  3
1716, 9neeq12i 2364 . . . 4  |-  ( ( .r `  ndx )  =/=  ( UnifSet `  ndx )  <->  3  =/= ; 1 3 )
1815, 17mpbir 146 . . 3  |-  ( .r
`  ndx )  =/=  ( UnifSet
`  ndx )
19 4re 8998 . . . . 5  |-  4  e.  RR
20 4nn0 9197 . . . . . 6  |-  4  e.  NN0
21 4lt10 9521 . . . . . 6  |-  4  < ; 1
0
222, 3, 20, 21declti 9423 . . . . 5  |-  4  < ; 1
3
2319, 22ltneii 8056 . . . 4  |-  4  =/= ; 1 3
24 starvndx 12599 . . . . 5  |-  ( *r `  ndx )  =  4
2524, 9neeq12i 2364 . . . 4  |-  ( ( *r `  ndx )  =/=  ( UnifSet `  ndx ) 
<->  4  =/= ; 1 3 )
2623, 25mpbir 146 . . 3  |-  ( *r `  ndx )  =/=  ( UnifSet `  ndx )
2711, 18, 263pm3.2i 1175 . 2  |-  ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( *r `  ndx )  =/=  ( UnifSet
`  ndx ) )
28 10re 9404 . . . . 5  |- ; 1 0  e.  RR
29 1nn0 9194 . . . . . 6  |-  1  e.  NN0
30 0nn0 9193 . . . . . 6  |-  0  e.  NN0
31 3nn 9083 . . . . . 6  |-  3  e.  NN
32 3pos 9015 . . . . . 6  |-  0  <  3
3329, 30, 31, 32declt 9413 . . . . 5  |- ; 1 0  < ; 1 3
3428, 33ltneii 8056 . . . 4  |- ; 1 0  =/= ; 1 3
35 plendx 12660 . . . . 5  |-  ( le
`  ndx )  = ; 1 0
3635, 9neeq12i 2364 . . . 4  |-  ( ( le `  ndx )  =/=  ( UnifSet `  ndx )  <-> ; 1 0  =/= ; 1 3 )
3734, 36mpbir 146 . . 3  |-  ( le
`  ndx )  =/=  ( UnifSet
`  ndx )
38 2nn 9082 . . . . . . 7  |-  2  e.  NN
3929, 38decnncl 9405 . . . . . 6  |- ; 1 2  e.  NN
4039nnrei 8930 . . . . 5  |- ; 1 2  e.  RR
41 2lt3 9091 . . . . . 6  |-  2  <  3
4229, 4, 31, 41declt 9413 . . . . 5  |- ; 1 2  < ; 1 3
4340, 42ltneii 8056 . . . 4  |- ; 1 2  =/= ; 1 3
44 dsndx 12671 . . . . 5  |-  ( dist `  ndx )  = ; 1 2
4544, 9neeq12i 2364 . . . 4  |-  ( (
dist `  ndx )  =/=  ( UnifSet `  ndx )  <-> ; 1 2  =/= ; 1 3 )
4643, 45mpbir 146 . . 3  |-  ( dist `  ndx )  =/=  ( UnifSet
`  ndx )
4737, 46pm3.2i 272 . 2  |-  ( ( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) )
4827, 47pm3.2i 272 1  |-  ( ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet
`  ndx )  /\  (
*r `  ndx )  =/=  ( UnifSet `  ndx ) )  /\  (
( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 978    =/= wne 2347   ` cfv 5218   0cc0 7813   1c1 7814   2c2 8972   3c3 8973   4c4 8974  ;cdc 9386   ndxcnx 12461   +g cplusg 12538   .rcmulr 12539   *rcstv 12540   lecple 12545   distcds 12547   UnifSetcunif 12548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929  ax-pre-mulgt0 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-9 8987  df-n0 9179  df-z 9256  df-dec 9387  df-ndx 12467  df-slot 12468  df-plusg 12551  df-mulr 12552  df-starv 12553  df-ple 12558  df-ds 12560  df-unif 12561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator