ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotsdifunifndx Unicode version

Theorem slotsdifunifndx 12905
Description: The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.)
Assertion
Ref Expression
slotsdifunifndx  |-  ( ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet
`  ndx )  /\  (
*r `  ndx )  =/=  ( UnifSet `  ndx ) )  /\  (
( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) ) )

Proof of Theorem slotsdifunifndx
StepHypRef Expression
1 2re 9060 . . . . 5  |-  2  e.  RR
2 1nn 9001 . . . . . 6  |-  1  e.  NN
3 3nn0 9267 . . . . . 6  |-  3  e.  NN0
4 2nn0 9266 . . . . . 6  |-  2  e.  NN0
5 2lt10 9594 . . . . . 6  |-  2  < ; 1
0
62, 3, 4, 5declti 9494 . . . . 5  |-  2  < ; 1
3
71, 6ltneii 8123 . . . 4  |-  2  =/= ; 1 3
8 plusgndx 12787 . . . . 5  |-  ( +g  ` 
ndx )  =  2
9 unifndx 12899 . . . . 5  |-  ( UnifSet ` 
ndx )  = ; 1 3
108, 9neeq12i 2384 . . . 4  |-  ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  <->  2  =/= ; 1 3 )
117, 10mpbir 146 . . 3  |-  ( +g  ` 
ndx )  =/=  ( UnifSet
`  ndx )
12 3re 9064 . . . . 5  |-  3  e.  RR
13 3lt10 9593 . . . . . 6  |-  3  < ; 1
0
142, 3, 3, 13declti 9494 . . . . 5  |-  3  < ; 1
3
1512, 14ltneii 8123 . . . 4  |-  3  =/= ; 1 3
16 mulrndx 12807 . . . . 5  |-  ( .r
`  ndx )  =  3
1716, 9neeq12i 2384 . . . 4  |-  ( ( .r `  ndx )  =/=  ( UnifSet `  ndx )  <->  3  =/= ; 1 3 )
1815, 17mpbir 146 . . 3  |-  ( .r
`  ndx )  =/=  ( UnifSet
`  ndx )
19 4re 9067 . . . . 5  |-  4  e.  RR
20 4nn0 9268 . . . . . 6  |-  4  e.  NN0
21 4lt10 9592 . . . . . 6  |-  4  < ; 1
0
222, 3, 20, 21declti 9494 . . . . 5  |-  4  < ; 1
3
2319, 22ltneii 8123 . . . 4  |-  4  =/= ; 1 3
24 starvndx 12816 . . . . 5  |-  ( *r `  ndx )  =  4
2524, 9neeq12i 2384 . . . 4  |-  ( ( *r `  ndx )  =/=  ( UnifSet `  ndx ) 
<->  4  =/= ; 1 3 )
2623, 25mpbir 146 . . 3  |-  ( *r `  ndx )  =/=  ( UnifSet `  ndx )
2711, 18, 263pm3.2i 1177 . 2  |-  ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( *r `  ndx )  =/=  ( UnifSet
`  ndx ) )
28 10re 9475 . . . . 5  |- ; 1 0  e.  RR
29 1nn0 9265 . . . . . 6  |-  1  e.  NN0
30 0nn0 9264 . . . . . 6  |-  0  e.  NN0
31 3nn 9153 . . . . . 6  |-  3  e.  NN
32 3pos 9084 . . . . . 6  |-  0  <  3
3329, 30, 31, 32declt 9484 . . . . 5  |- ; 1 0  < ; 1 3
3428, 33ltneii 8123 . . . 4  |- ; 1 0  =/= ; 1 3
35 plendx 12877 . . . . 5  |-  ( le
`  ndx )  = ; 1 0
3635, 9neeq12i 2384 . . . 4  |-  ( ( le `  ndx )  =/=  ( UnifSet `  ndx )  <-> ; 1 0  =/= ; 1 3 )
3734, 36mpbir 146 . . 3  |-  ( le
`  ndx )  =/=  ( UnifSet
`  ndx )
38 2nn 9152 . . . . . . 7  |-  2  e.  NN
3929, 38decnncl 9476 . . . . . 6  |- ; 1 2  e.  NN
4039nnrei 8999 . . . . 5  |- ; 1 2  e.  RR
41 2lt3 9161 . . . . . 6  |-  2  <  3
4229, 4, 31, 41declt 9484 . . . . 5  |- ; 1 2  < ; 1 3
4340, 42ltneii 8123 . . . 4  |- ; 1 2  =/= ; 1 3
44 dsndx 12888 . . . . 5  |-  ( dist `  ndx )  = ; 1 2
4544, 9neeq12i 2384 . . . 4  |-  ( (
dist `  ndx )  =/=  ( UnifSet `  ndx )  <-> ; 1 2  =/= ; 1 3 )
4643, 45mpbir 146 . . 3  |-  ( dist `  ndx )  =/=  ( UnifSet
`  ndx )
4737, 46pm3.2i 272 . 2  |-  ( ( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) )
4827, 47pm3.2i 272 1  |-  ( ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet
`  ndx )  /\  (
*r `  ndx )  =/=  ( UnifSet `  ndx ) )  /\  (
( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 980    =/= wne 2367   ` cfv 5258   0cc0 7879   1c1 7880   2c2 9041   3c3 9042   4c4 9043  ;cdc 9457   ndxcnx 12675   +g cplusg 12755   .rcmulr 12756   *rcstv 12757   lecple 12762   distcds 12764   UnifSetcunif 12765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995  ax-pre-mulgt0 7996
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-dec 9458  df-ndx 12681  df-slot 12682  df-plusg 12768  df-mulr 12769  df-starv 12770  df-ple 12775  df-ds 12777  df-unif 12778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator