ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  slotsdifunifndx Unicode version

Theorem slotsdifunifndx 12936
Description: The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.)
Assertion
Ref Expression
slotsdifunifndx  |-  ( ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet
`  ndx )  /\  (
*r `  ndx )  =/=  ( UnifSet `  ndx ) )  /\  (
( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) ) )

Proof of Theorem slotsdifunifndx
StepHypRef Expression
1 2re 9079 . . . . 5  |-  2  e.  RR
2 1nn 9020 . . . . . 6  |-  1  e.  NN
3 3nn0 9286 . . . . . 6  |-  3  e.  NN0
4 2nn0 9285 . . . . . 6  |-  2  e.  NN0
5 2lt10 9613 . . . . . 6  |-  2  < ; 1
0
62, 3, 4, 5declti 9513 . . . . 5  |-  2  < ; 1
3
71, 6ltneii 8142 . . . 4  |-  2  =/= ; 1 3
8 plusgndx 12814 . . . . 5  |-  ( +g  ` 
ndx )  =  2
9 unifndx 12930 . . . . 5  |-  ( UnifSet ` 
ndx )  = ; 1 3
108, 9neeq12i 2384 . . . 4  |-  ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  <->  2  =/= ; 1 3 )
117, 10mpbir 146 . . 3  |-  ( +g  ` 
ndx )  =/=  ( UnifSet
`  ndx )
12 3re 9083 . . . . 5  |-  3  e.  RR
13 3lt10 9612 . . . . . 6  |-  3  < ; 1
0
142, 3, 3, 13declti 9513 . . . . 5  |-  3  < ; 1
3
1512, 14ltneii 8142 . . . 4  |-  3  =/= ; 1 3
16 mulrndx 12834 . . . . 5  |-  ( .r
`  ndx )  =  3
1716, 9neeq12i 2384 . . . 4  |-  ( ( .r `  ndx )  =/=  ( UnifSet `  ndx )  <->  3  =/= ; 1 3 )
1815, 17mpbir 146 . . 3  |-  ( .r
`  ndx )  =/=  ( UnifSet
`  ndx )
19 4re 9086 . . . . 5  |-  4  e.  RR
20 4nn0 9287 . . . . . 6  |-  4  e.  NN0
21 4lt10 9611 . . . . . 6  |-  4  < ; 1
0
222, 3, 20, 21declti 9513 . . . . 5  |-  4  < ; 1
3
2319, 22ltneii 8142 . . . 4  |-  4  =/= ; 1 3
24 starvndx 12843 . . . . 5  |-  ( *r `  ndx )  =  4
2524, 9neeq12i 2384 . . . 4  |-  ( ( *r `  ndx )  =/=  ( UnifSet `  ndx ) 
<->  4  =/= ; 1 3 )
2623, 25mpbir 146 . . 3  |-  ( *r `  ndx )  =/=  ( UnifSet `  ndx )
2711, 18, 263pm3.2i 1177 . 2  |-  ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( *r `  ndx )  =/=  ( UnifSet
`  ndx ) )
28 10re 9494 . . . . 5  |- ; 1 0  e.  RR
29 1nn0 9284 . . . . . 6  |-  1  e.  NN0
30 0nn0 9283 . . . . . 6  |-  0  e.  NN0
31 3nn 9172 . . . . . 6  |-  3  e.  NN
32 3pos 9103 . . . . . 6  |-  0  <  3
3329, 30, 31, 32declt 9503 . . . . 5  |- ; 1 0  < ; 1 3
3428, 33ltneii 8142 . . . 4  |- ; 1 0  =/= ; 1 3
35 plendx 12904 . . . . 5  |-  ( le
`  ndx )  = ; 1 0
3635, 9neeq12i 2384 . . . 4  |-  ( ( le `  ndx )  =/=  ( UnifSet `  ndx )  <-> ; 1 0  =/= ; 1 3 )
3734, 36mpbir 146 . . 3  |-  ( le
`  ndx )  =/=  ( UnifSet
`  ndx )
38 2nn 9171 . . . . . . 7  |-  2  e.  NN
3929, 38decnncl 9495 . . . . . 6  |- ; 1 2  e.  NN
4039nnrei 9018 . . . . 5  |- ; 1 2  e.  RR
41 2lt3 9180 . . . . . 6  |-  2  <  3
4229, 4, 31, 41declt 9503 . . . . 5  |- ; 1 2  < ; 1 3
4340, 42ltneii 8142 . . . 4  |- ; 1 2  =/= ; 1 3
44 dsndx 12919 . . . . 5  |-  ( dist `  ndx )  = ; 1 2
4544, 9neeq12i 2384 . . . 4  |-  ( (
dist `  ndx )  =/=  ( UnifSet `  ndx )  <-> ; 1 2  =/= ; 1 3 )
4643, 45mpbir 146 . . 3  |-  ( dist `  ndx )  =/=  ( UnifSet
`  ndx )
4737, 46pm3.2i 272 . 2  |-  ( ( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) )
4827, 47pm3.2i 272 1  |-  ( ( ( +g  `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( .r `  ndx )  =/=  ( UnifSet
`  ndx )  /\  (
*r `  ndx )  =/=  ( UnifSet `  ndx ) )  /\  (
( le `  ndx )  =/=  ( UnifSet `  ndx )  /\  ( dist `  ndx )  =/=  ( UnifSet `  ndx ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 980    =/= wne 2367   ` cfv 5259   0cc0 7898   1c1 7899   2c2 9060   3c3 9061   4c4 9062  ;cdc 9476   ndxcnx 12702   +g cplusg 12782   .rcmulr 12783   *rcstv 12784   lecple 12789   distcds 12791   UnifSetcunif 12792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-ltadd 8014  ax-pre-mulgt0 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-ndx 12708  df-slot 12709  df-plusg 12795  df-mulr 12796  df-starv 12797  df-ple 12802  df-ds 12804  df-unif 12805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator