| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > slotsdifunifndx | Unicode version | ||
| Description: The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.) |
| Ref | Expression |
|---|---|
| slotsdifunifndx |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9180 |
. . . . 5
| |
| 2 | 1nn 9121 |
. . . . . 6
| |
| 3 | 3nn0 9387 |
. . . . . 6
| |
| 4 | 2nn0 9386 |
. . . . . 6
| |
| 5 | 2lt10 9715 |
. . . . . 6
| |
| 6 | 2, 3, 4, 5 | declti 9615 |
. . . . 5
|
| 7 | 1, 6 | ltneii 8243 |
. . . 4
|
| 8 | plusgndx 13142 |
. . . . 5
| |
| 9 | unifndx 13259 |
. . . . 5
| |
| 10 | 8, 9 | neeq12i 2417 |
. . . 4
|
| 11 | 7, 10 | mpbir 146 |
. . 3
|
| 12 | 3re 9184 |
. . . . 5
| |
| 13 | 3lt10 9714 |
. . . . . 6
| |
| 14 | 2, 3, 3, 13 | declti 9615 |
. . . . 5
|
| 15 | 12, 14 | ltneii 8243 |
. . . 4
|
| 16 | mulrndx 13163 |
. . . . 5
| |
| 17 | 16, 9 | neeq12i 2417 |
. . . 4
|
| 18 | 15, 17 | mpbir 146 |
. . 3
|
| 19 | 4re 9187 |
. . . . 5
| |
| 20 | 4nn0 9388 |
. . . . . 6
| |
| 21 | 4lt10 9713 |
. . . . . 6
| |
| 22 | 2, 3, 20, 21 | declti 9615 |
. . . . 5
|
| 23 | 19, 22 | ltneii 8243 |
. . . 4
|
| 24 | starvndx 13172 |
. . . . 5
| |
| 25 | 24, 9 | neeq12i 2417 |
. . . 4
|
| 26 | 23, 25 | mpbir 146 |
. . 3
|
| 27 | 11, 18, 26 | 3pm3.2i 1199 |
. 2
|
| 28 | 10re 9596 |
. . . . 5
| |
| 29 | 1nn0 9385 |
. . . . . 6
| |
| 30 | 0nn0 9384 |
. . . . . 6
| |
| 31 | 3nn 9273 |
. . . . . 6
| |
| 32 | 3pos 9204 |
. . . . . 6
| |
| 33 | 29, 30, 31, 32 | declt 9605 |
. . . . 5
|
| 34 | 28, 33 | ltneii 8243 |
. . . 4
|
| 35 | plendx 13233 |
. . . . 5
| |
| 36 | 35, 9 | neeq12i 2417 |
. . . 4
|
| 37 | 34, 36 | mpbir 146 |
. . 3
|
| 38 | 2nn 9272 |
. . . . . . 7
| |
| 39 | 29, 38 | decnncl 9597 |
. . . . . 6
|
| 40 | 39 | nnrei 9119 |
. . . . 5
|
| 41 | 2lt3 9281 |
. . . . . 6
| |
| 42 | 29, 4, 31, 41 | declt 9605 |
. . . . 5
|
| 43 | 40, 42 | ltneii 8243 |
. . . 4
|
| 44 | dsndx 13248 |
. . . . 5
| |
| 45 | 44, 9 | neeq12i 2417 |
. . . 4
|
| 46 | 43, 45 | mpbir 146 |
. . 3
|
| 47 | 37, 46 | pm3.2i 272 |
. 2
|
| 48 | 27, 47 | pm3.2i 272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-n0 9370 df-z 9447 df-dec 9579 df-ndx 13035 df-slot 13036 df-plusg 13123 df-mulr 13124 df-starv 13125 df-ple 13130 df-ds 13132 df-unif 13133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |