ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ftp Unicode version

Theorem ftp 5653
Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.)
Hypotheses
Ref Expression
ftp.a  |-  A  e. 
_V
ftp.b  |-  B  e. 
_V
ftp.c  |-  C  e. 
_V
ftp.d  |-  X  e. 
_V
ftp.e  |-  Y  e. 
_V
ftp.f  |-  Z  e. 
_V
ftp.g  |-  A  =/= 
B
ftp.h  |-  A  =/= 
C
ftp.i  |-  B  =/= 
C
Assertion
Ref Expression
ftp  |-  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } : { A ,  B ,  C } --> { X ,  Y ,  Z }

Proof of Theorem ftp
StepHypRef Expression
1 ftp.a . . 3  |-  A  e. 
_V
2 ftp.b . . 3  |-  B  e. 
_V
3 ftp.c . . 3  |-  C  e. 
_V
41, 2, 33pm3.2i 1160 . 2  |-  ( A  e.  _V  /\  B  e.  _V  /\  C  e. 
_V )
5 ftp.d . . 3  |-  X  e. 
_V
6 ftp.e . . 3  |-  Y  e. 
_V
7 ftp.f . . 3  |-  Z  e. 
_V
85, 6, 73pm3.2i 1160 . 2  |-  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e. 
_V )
9 ftp.g . . 3  |-  A  =/= 
B
10 ftp.h . . 3  |-  A  =/= 
C
11 ftp.i . . 3  |-  B  =/= 
C
129, 10, 113pm3.2i 1160 . 2  |-  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )
13 ftpg 5652 . 2  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  _V )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } : { A ,  B ,  C } --> { X ,  Y ,  Z }
)
144, 8, 12, 13mp3an 1319 1  |-  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } : { A ,  B ,  C } --> { X ,  Y ,  Z }
Colors of variables: wff set class
Syntax hints:    /\ w3a 963    e. wcel 2128    =/= wne 2327   _Vcvv 2712   {ctp 3562   <.cop 3563   -->wf 5167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-tp 3568  df-op 3569  df-br 3967  df-opab 4027  df-id 4254  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator