ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ftp Unicode version

Theorem ftp 5669
Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.)
Hypotheses
Ref Expression
ftp.a  |-  A  e. 
_V
ftp.b  |-  B  e. 
_V
ftp.c  |-  C  e. 
_V
ftp.d  |-  X  e. 
_V
ftp.e  |-  Y  e. 
_V
ftp.f  |-  Z  e. 
_V
ftp.g  |-  A  =/= 
B
ftp.h  |-  A  =/= 
C
ftp.i  |-  B  =/= 
C
Assertion
Ref Expression
ftp  |-  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } : { A ,  B ,  C } --> { X ,  Y ,  Z }

Proof of Theorem ftp
StepHypRef Expression
1 ftp.a . . 3  |-  A  e. 
_V
2 ftp.b . . 3  |-  B  e. 
_V
3 ftp.c . . 3  |-  C  e. 
_V
41, 2, 33pm3.2i 1165 . 2  |-  ( A  e.  _V  /\  B  e.  _V  /\  C  e. 
_V )
5 ftp.d . . 3  |-  X  e. 
_V
6 ftp.e . . 3  |-  Y  e. 
_V
7 ftp.f . . 3  |-  Z  e. 
_V
85, 6, 73pm3.2i 1165 . 2  |-  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e. 
_V )
9 ftp.g . . 3  |-  A  =/= 
B
10 ftp.h . . 3  |-  A  =/= 
C
11 ftp.i . . 3  |-  B  =/= 
C
129, 10, 113pm3.2i 1165 . 2  |-  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )
13 ftpg 5668 . 2  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  _V )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } : { A ,  B ,  C } --> { X ,  Y ,  Z }
)
144, 8, 12, 13mp3an 1327 1  |-  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } : { A ,  B ,  C } --> { X ,  Y ,  Z }
Colors of variables: wff set class
Syntax hints:    /\ w3a 968    e. wcel 2136    =/= wne 2335   _Vcvv 2725   {ctp 3577   <.cop 3578   -->wf 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-ral 2448  df-rex 2449  df-reu 2450  df-v 2727  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-pw 3560  df-sn 3581  df-pr 3582  df-tp 3583  df-op 3584  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator