ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ftp Unicode version

Theorem ftp 5747
Description: A function with a domain of three elements. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by Alexander van der Vekens, 23-Jan-2018.)
Hypotheses
Ref Expression
ftp.a  |-  A  e. 
_V
ftp.b  |-  B  e. 
_V
ftp.c  |-  C  e. 
_V
ftp.d  |-  X  e. 
_V
ftp.e  |-  Y  e. 
_V
ftp.f  |-  Z  e. 
_V
ftp.g  |-  A  =/= 
B
ftp.h  |-  A  =/= 
C
ftp.i  |-  B  =/= 
C
Assertion
Ref Expression
ftp  |-  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } : { A ,  B ,  C } --> { X ,  Y ,  Z }

Proof of Theorem ftp
StepHypRef Expression
1 ftp.a . . 3  |-  A  e. 
_V
2 ftp.b . . 3  |-  B  e. 
_V
3 ftp.c . . 3  |-  C  e. 
_V
41, 2, 33pm3.2i 1177 . 2  |-  ( A  e.  _V  /\  B  e.  _V  /\  C  e. 
_V )
5 ftp.d . . 3  |-  X  e. 
_V
6 ftp.e . . 3  |-  Y  e. 
_V
7 ftp.f . . 3  |-  Z  e. 
_V
85, 6, 73pm3.2i 1177 . 2  |-  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e. 
_V )
9 ftp.g . . 3  |-  A  =/= 
B
10 ftp.h . . 3  |-  A  =/= 
C
11 ftp.i . . 3  |-  B  =/= 
C
129, 10, 113pm3.2i 1177 . 2  |-  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C )
13 ftpg 5746 . 2  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  ( X  e.  _V  /\  Y  e.  _V  /\  Z  e.  _V )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C
) )  ->  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } : { A ,  B ,  C } --> { X ,  Y ,  Z }
)
144, 8, 12, 13mp3an 1348 1  |-  { <. A ,  X >. ,  <. B ,  Y >. ,  <. C ,  Z >. } : { A ,  B ,  C } --> { X ,  Y ,  Z }
Colors of variables: wff set class
Syntax hints:    /\ w3a 980    e. wcel 2167    =/= wne 2367   _Vcvv 2763   {ctp 3624   <.cop 3625   -->wf 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator