ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4bc2eq6 Unicode version

Theorem 4bc2eq6 10756
Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.)
Assertion
Ref Expression
4bc2eq6  |-  ( 4  _C  2 )  =  6

Proof of Theorem 4bc2eq6
StepHypRef Expression
1 0z 9266 . . . . 5  |-  0  e.  ZZ
2 4z 9285 . . . . 5  |-  4  e.  ZZ
3 2z 9283 . . . . 5  |-  2  e.  ZZ
41, 2, 33pm3.2i 1175 . . . 4  |-  ( 0  e.  ZZ  /\  4  e.  ZZ  /\  2  e.  ZZ )
5 0le2 9011 . . . . 5  |-  0  <_  2
6 2re 8991 . . . . . 6  |-  2  e.  RR
7 4re 8998 . . . . . 6  |-  4  e.  RR
8 2lt4 9094 . . . . . 6  |-  2  <  4
96, 7, 8ltleii 8062 . . . . 5  |-  2  <_  4
105, 9pm3.2i 272 . . . 4  |-  ( 0  <_  2  /\  2  <_  4 )
11 elfz4 10020 . . . 4  |-  ( ( ( 0  e.  ZZ  /\  4  e.  ZZ  /\  2  e.  ZZ )  /\  ( 0  <_  2  /\  2  <_  4 ) )  ->  2  e.  ( 0 ... 4
) )
124, 10, 11mp2an 426 . . 3  |-  2  e.  ( 0 ... 4
)
13 bcval2 10732 . . 3  |-  ( 2  e.  ( 0 ... 4 )  ->  (
4  _C  2 )  =  ( ( ! `
 4 )  / 
( ( ! `  ( 4  -  2 ) )  x.  ( ! `  2 )
) ) )
1412, 13ax-mp 5 . 2  |-  ( 4  _C  2 )  =  ( ( ! ` 
4 )  /  (
( ! `  (
4  -  2 ) )  x.  ( ! `
 2 ) ) )
15 3nn0 9196 . . . . . 6  |-  3  e.  NN0
16 facp1 10712 . . . . . 6  |-  ( 3  e.  NN0  ->  ( ! `
 ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
3  +  1 ) ) )
1715, 16ax-mp 5 . . . . 5  |-  ( ! `
 ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
3  +  1 ) )
18 df-4 8982 . . . . . 6  |-  4  =  ( 3  +  1 )
1918fveq2i 5520 . . . . 5  |-  ( ! `
 4 )  =  ( ! `  (
3  +  1 ) )
2018oveq2i 5888 . . . . 5  |-  ( ( ! `  3 )  x.  4 )  =  ( ( ! ` 
3 )  x.  (
3  +  1 ) )
2117, 19, 203eqtr4i 2208 . . . 4  |-  ( ! `
 4 )  =  ( ( ! ` 
3 )  x.  4 )
22 4cn 8999 . . . . . . . . 9  |-  4  e.  CC
23 2cn 8992 . . . . . . . . 9  |-  2  e.  CC
24 2p2e4 9048 . . . . . . . . 9  |-  ( 2  +  2 )  =  4
2522, 23, 23, 24subaddrii 8248 . . . . . . . 8  |-  ( 4  -  2 )  =  2
2625fveq2i 5520 . . . . . . 7  |-  ( ! `
 ( 4  -  2 ) )  =  ( ! `  2
)
27 fac2 10713 . . . . . . 7  |-  ( ! `
 2 )  =  2
2826, 27eqtri 2198 . . . . . 6  |-  ( ! `
 ( 4  -  2 ) )  =  2
2928, 27oveq12i 5889 . . . . 5  |-  ( ( ! `  ( 4  -  2 ) )  x.  ( ! ` 
2 ) )  =  ( 2  x.  2 )
30 2t2e4 9075 . . . . 5  |-  ( 2  x.  2 )  =  4
3129, 30eqtri 2198 . . . 4  |-  ( ( ! `  ( 4  -  2 ) )  x.  ( ! ` 
2 ) )  =  4
3221, 31oveq12i 5889 . . 3  |-  ( ( ! `  4 )  /  ( ( ! `
 ( 4  -  2 ) )  x.  ( ! `  2
) ) )  =  ( ( ( ! `
 3 )  x.  4 )  /  4
)
33 faccl 10717 . . . . . . 7  |-  ( 3  e.  NN0  ->  ( ! `
 3 )  e.  NN )
3415, 33ax-mp 5 . . . . . 6  |-  ( ! `
 3 )  e.  NN
3534nncni 8931 . . . . 5  |-  ( ! `
 3 )  e.  CC
36 4ap0 9020 . . . . 5  |-  4 #  0
3735, 22, 36divcanap4i 8718 . . . 4  |-  ( ( ( ! `  3
)  x.  4 )  /  4 )  =  ( ! `  3
)
38 fac3 10714 . . . 4  |-  ( ! `
 3 )  =  6
3937, 38eqtri 2198 . . 3  |-  ( ( ( ! `  3
)  x.  4 )  /  4 )  =  6
4032, 39eqtri 2198 . 2  |-  ( ( ! `  4 )  /  ( ( ! `
 ( 4  -  2 ) )  x.  ( ! `  2
) ) )  =  6
4114, 40eqtri 2198 1  |-  ( 4  _C  2 )  =  6
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    <_ cle 7995    - cmin 8130    / cdiv 8631   NNcn 8921   2c2 8972   3c3 8973   4c4 8974   6c6 8976   NN0cn0 9178   ZZcz 9255   ...cfz 10010   !cfa 10707    _C cbc 10729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-fz 10011  df-seqfrec 10448  df-fac 10708  df-bc 10730
This theorem is referenced by:  ex-bc  14566
  Copyright terms: Public domain W3C validator