ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4bc2eq6 Unicode version

Theorem 4bc2eq6 10996
Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.)
Assertion
Ref Expression
4bc2eq6  |-  ( 4  _C  2 )  =  6

Proof of Theorem 4bc2eq6
StepHypRef Expression
1 0z 9457 . . . . 5  |-  0  e.  ZZ
2 4z 9476 . . . . 5  |-  4  e.  ZZ
3 2z 9474 . . . . 5  |-  2  e.  ZZ
41, 2, 33pm3.2i 1199 . . . 4  |-  ( 0  e.  ZZ  /\  4  e.  ZZ  /\  2  e.  ZZ )
5 0le2 9200 . . . . 5  |-  0  <_  2
6 2re 9180 . . . . . 6  |-  2  e.  RR
7 4re 9187 . . . . . 6  |-  4  e.  RR
8 2lt4 9284 . . . . . 6  |-  2  <  4
96, 7, 8ltleii 8249 . . . . 5  |-  2  <_  4
105, 9pm3.2i 272 . . . 4  |-  ( 0  <_  2  /\  2  <_  4 )
11 elfz4 10214 . . . 4  |-  ( ( ( 0  e.  ZZ  /\  4  e.  ZZ  /\  2  e.  ZZ )  /\  ( 0  <_  2  /\  2  <_  4 ) )  ->  2  e.  ( 0 ... 4
) )
124, 10, 11mp2an 426 . . 3  |-  2  e.  ( 0 ... 4
)
13 bcval2 10972 . . 3  |-  ( 2  e.  ( 0 ... 4 )  ->  (
4  _C  2 )  =  ( ( ! `
 4 )  / 
( ( ! `  ( 4  -  2 ) )  x.  ( ! `  2 )
) ) )
1412, 13ax-mp 5 . 2  |-  ( 4  _C  2 )  =  ( ( ! ` 
4 )  /  (
( ! `  (
4  -  2 ) )  x.  ( ! `
 2 ) ) )
15 3nn0 9387 . . . . . 6  |-  3  e.  NN0
16 facp1 10952 . . . . . 6  |-  ( 3  e.  NN0  ->  ( ! `
 ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
3  +  1 ) ) )
1715, 16ax-mp 5 . . . . 5  |-  ( ! `
 ( 3  +  1 ) )  =  ( ( ! ` 
3 )  x.  (
3  +  1 ) )
18 df-4 9171 . . . . . 6  |-  4  =  ( 3  +  1 )
1918fveq2i 5630 . . . . 5  |-  ( ! `
 4 )  =  ( ! `  (
3  +  1 ) )
2018oveq2i 6012 . . . . 5  |-  ( ( ! `  3 )  x.  4 )  =  ( ( ! ` 
3 )  x.  (
3  +  1 ) )
2117, 19, 203eqtr4i 2260 . . . 4  |-  ( ! `
 4 )  =  ( ( ! ` 
3 )  x.  4 )
22 4cn 9188 . . . . . . . . 9  |-  4  e.  CC
23 2cn 9181 . . . . . . . . 9  |-  2  e.  CC
24 2p2e4 9237 . . . . . . . . 9  |-  ( 2  +  2 )  =  4
2522, 23, 23, 24subaddrii 8435 . . . . . . . 8  |-  ( 4  -  2 )  =  2
2625fveq2i 5630 . . . . . . 7  |-  ( ! `
 ( 4  -  2 ) )  =  ( ! `  2
)
27 fac2 10953 . . . . . . 7  |-  ( ! `
 2 )  =  2
2826, 27eqtri 2250 . . . . . 6  |-  ( ! `
 ( 4  -  2 ) )  =  2
2928, 27oveq12i 6013 . . . . 5  |-  ( ( ! `  ( 4  -  2 ) )  x.  ( ! ` 
2 ) )  =  ( 2  x.  2 )
30 2t2e4 9265 . . . . 5  |-  ( 2  x.  2 )  =  4
3129, 30eqtri 2250 . . . 4  |-  ( ( ! `  ( 4  -  2 ) )  x.  ( ! ` 
2 ) )  =  4
3221, 31oveq12i 6013 . . 3  |-  ( ( ! `  4 )  /  ( ( ! `
 ( 4  -  2 ) )  x.  ( ! `  2
) ) )  =  ( ( ( ! `
 3 )  x.  4 )  /  4
)
33 faccl 10957 . . . . . . 7  |-  ( 3  e.  NN0  ->  ( ! `
 3 )  e.  NN )
3415, 33ax-mp 5 . . . . . 6  |-  ( ! `
 3 )  e.  NN
3534nncni 9120 . . . . 5  |-  ( ! `
 3 )  e.  CC
36 4ap0 9209 . . . . 5  |-  4 #  0
3735, 22, 36divcanap4i 8906 . . . 4  |-  ( ( ( ! `  3
)  x.  4 )  /  4 )  =  ( ! `  3
)
38 fac3 10954 . . . 4  |-  ( ! `
 3 )  =  6
3937, 38eqtri 2250 . . 3  |-  ( ( ( ! `  3
)  x.  4 )  /  4 )  =  6
4032, 39eqtri 2250 . 2  |-  ( ( ! `  4 )  /  ( ( ! `
 ( 4  -  2 ) )  x.  ( ! `  2
) ) )  =  6
4114, 40eqtri 2250 1  |-  ( 4  _C  2 )  =  6
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004    <_ cle 8182    - cmin 8317    / cdiv 8819   NNcn 9110   2c2 9161   3c3 9162   4c4 9163   6c6 9165   NN0cn0 9369   ZZcz 9446   ...cfz 10204   !cfa 10947    _C cbc 10969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-fz 10205  df-seqfrec 10670  df-fac 10948  df-bc 10970
This theorem is referenced by:  ex-bc  16093
  Copyright terms: Public domain W3C validator