ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divrecap Unicode version

Theorem divrecap 8717
Description: Relationship between division and reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
Assertion
Ref Expression
divrecap  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )

Proof of Theorem divrecap
StepHypRef Expression
1 simp2 1000 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  B  e.  CC )
2 simp1 999 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  A  e.  CC )
3 recclap 8708 . . . . 5  |-  ( ( B  e.  CC  /\  B #  0 )  ->  (
1  /  B )  e.  CC )
433adant1 1017 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
1  /  B )  e.  CC )
51, 2, 4mul12d 8180 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( B  x.  ( A  x.  ( 1  /  B
) ) )  =  ( A  x.  ( B  x.  ( 1  /  B ) ) ) )
6 recidap 8715 . . . . 5  |-  ( ( B  e.  CC  /\  B #  0 )  ->  ( B  x.  ( 1  /  B ) )  =  1 )
763adant1 1017 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( B  x.  ( 1  /  B ) )  =  1 )
87oveq2d 5939 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  x.  ( B  x.  ( 1  /  B
) ) )  =  ( A  x.  1 ) )
92mulridd 8045 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  x.  1 )  =  A )
105, 8, 93eqtrd 2233 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( B  x.  ( A  x.  ( 1  /  B
) ) )  =  A )
112, 4mulcld 8049 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  x.  ( 1  /  B ) )  e.  CC )
12 3simpc 998 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( B  e.  CC  /\  B #  0 ) )
13 divmulap 8704 . . 3  |-  ( ( A  e.  CC  /\  ( A  x.  (
1  /  B ) )  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( ( A  /  B )  =  ( A  x.  (
1  /  B ) )  <->  ( B  x.  ( A  x.  (
1  /  B ) ) )  =  A ) )
142, 11, 12, 13syl3anc 1249 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
( A  /  B
)  =  ( A  x.  ( 1  /  B ) )  <->  ( B  x.  ( A  x.  (
1  /  B ) ) )  =  A ) )
1510, 14mpbird 167 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5923   CCcc 7879   0cc0 7881   1c1 7882    x. cmul 7886   # cap 8610    / cdiv 8701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702
This theorem is referenced by:  divrecap2  8718  divassap  8719  divdirap  8726  dividap  8730  divnegap  8735  rec11ap  8739  divdiv32ap  8749  redivclap  8760  divrecapzi  8779  divrecapi  8786  divrecapd  8822  expdivap  10684  efival  11899  ef01bndlem  11923  cos01bnd  11925  divcnap  14811
  Copyright terms: Public domain W3C validator