| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divrecap | Unicode version | ||
| Description: Relationship between division and reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.) |
| Ref | Expression |
|---|---|
| divrecap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1001 |
. . . 4
| |
| 2 | simp1 1000 |
. . . 4
| |
| 3 | recclap 8782 |
. . . . 5
| |
| 4 | 3 | 3adant1 1018 |
. . . 4
|
| 5 | 1, 2, 4 | mul12d 8254 |
. . 3
|
| 6 | recidap 8789 |
. . . . 5
| |
| 7 | 6 | 3adant1 1018 |
. . . 4
|
| 8 | 7 | oveq2d 5978 |
. . 3
|
| 9 | 2 | mulridd 8119 |
. . 3
|
| 10 | 5, 8, 9 | 3eqtrd 2243 |
. 2
|
| 11 | 2, 4 | mulcld 8123 |
. . 3
|
| 12 | 3simpc 999 |
. . 3
| |
| 13 | divmulap 8778 |
. . 3
| |
| 14 | 2, 11, 12, 13 | syl3anc 1250 |
. 2
|
| 15 | 10, 14 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-id 4353 df-po 4356 df-iso 4357 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 |
| This theorem is referenced by: divrecap2 8792 divassap 8793 divdirap 8800 dividap 8804 divnegap 8809 rec11ap 8813 divdiv32ap 8823 redivclap 8834 divrecapzi 8853 divrecapi 8860 divrecapd 8896 expdivap 10767 efival 12128 ef01bndlem 12152 cos01bnd 12154 divcnap 15122 |
| Copyright terms: Public domain | W3C validator |