ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divrecap Unicode version

Theorem divrecap 8760
Description: Relationship between division and reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
Assertion
Ref Expression
divrecap  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )

Proof of Theorem divrecap
StepHypRef Expression
1 simp2 1000 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  B  e.  CC )
2 simp1 999 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  A  e.  CC )
3 recclap 8751 . . . . 5  |-  ( ( B  e.  CC  /\  B #  0 )  ->  (
1  /  B )  e.  CC )
433adant1 1017 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
1  /  B )  e.  CC )
51, 2, 4mul12d 8223 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( B  x.  ( A  x.  ( 1  /  B
) ) )  =  ( A  x.  ( B  x.  ( 1  /  B ) ) ) )
6 recidap 8758 . . . . 5  |-  ( ( B  e.  CC  /\  B #  0 )  ->  ( B  x.  ( 1  /  B ) )  =  1 )
763adant1 1017 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( B  x.  ( 1  /  B ) )  =  1 )
87oveq2d 5959 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  x.  ( B  x.  ( 1  /  B
) ) )  =  ( A  x.  1 ) )
92mulridd 8088 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  x.  1 )  =  A )
105, 8, 93eqtrd 2241 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( B  x.  ( A  x.  ( 1  /  B
) ) )  =  A )
112, 4mulcld 8092 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  x.  ( 1  /  B ) )  e.  CC )
12 3simpc 998 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( B  e.  CC  /\  B #  0 ) )
13 divmulap 8747 . . 3  |-  ( ( A  e.  CC  /\  ( A  x.  (
1  /  B ) )  e.  CC  /\  ( B  e.  CC  /\  B #  0 ) )  ->  ( ( A  /  B )  =  ( A  x.  (
1  /  B ) )  <->  ( B  x.  ( A  x.  (
1  /  B ) ) )  =  A ) )
142, 11, 12, 13syl3anc 1249 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
( A  /  B
)  =  ( A  x.  ( 1  /  B ) )  <->  ( B  x.  ( A  x.  (
1  /  B ) ) )  =  A ) )
1510, 14mpbird 167 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   class class class wbr 4043  (class class class)co 5943   CCcc 7922   0cc0 7924   1c1 7925    x. cmul 7929   # cap 8653    / cdiv 8744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745
This theorem is referenced by:  divrecap2  8761  divassap  8762  divdirap  8769  dividap  8773  divnegap  8778  rec11ap  8782  divdiv32ap  8792  redivclap  8803  divrecapzi  8822  divrecapi  8829  divrecapd  8865  expdivap  10733  efival  12014  ef01bndlem  12038  cos01bnd  12040  divcnap  15008
  Copyright terms: Public domain W3C validator