Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsupti | Unicode version |
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.) |
Ref | Expression |
---|---|
supmoti.ti |
Ref | Expression |
---|---|
eqsupti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmoti.ti | . . . . 5 | |
2 | 1 | adantlr 477 | . . . 4 |
3 | breq1 4001 | . . . . . . . . . 10 | |
4 | 3 | notbid 667 | . . . . . . . . 9 |
5 | 4 | ralbidv 2475 | . . . . . . . 8 |
6 | breq2 4002 | . . . . . . . . . 10 | |
7 | 6 | imbi1d 231 | . . . . . . . . 9 |
8 | 7 | ralbidv 2475 | . . . . . . . 8 |
9 | 5, 8 | anbi12d 473 | . . . . . . 7 |
10 | 9 | rspcev 2839 | . . . . . 6 |
11 | 10 | 3impb 1199 | . . . . 5 |
12 | 11 | adantl 277 | . . . 4 |
13 | 2, 12 | supval2ti 6984 | . . 3 |
14 | 3simpc 996 | . . . . 5 | |
15 | 14 | adantl 277 | . . . 4 |
16 | simpr1 1003 | . . . . 5 | |
17 | 2, 12 | supeuti 6983 | . . . . 5 |
18 | 9 | riota2 5843 | . . . . 5 |
19 | 16, 17, 18 | syl2anc 411 | . . . 4 |
20 | 15, 19 | mpbid 147 | . . 3 |
21 | 13, 20 | eqtrd 2208 | . 2 |
22 | 21 | ex 115 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 w3a 978 wceq 1353 wcel 2146 wral 2453 wrex 2454 wreu 2455 class class class wbr 3998 crio 5820 csup 6971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-riota 5821 df-sup 6973 |
This theorem is referenced by: eqsuptid 6986 eqinfti 7009 maxabs 11184 xrmaxif 11225 suprzcl2dc 11921 bezoutlemsup 11975 suplociccex 13672 |
Copyright terms: Public domain | W3C validator |