ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqsupti Unicode version

Theorem eqsupti 6889
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.)
Hypothesis
Ref Expression
supmoti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
Assertion
Ref Expression
eqsupti  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) )  ->  sup ( B ,  A ,  R )  =  C ) )
Distinct variable groups:    u, A, v, y, z    y, B, z    u, R, v, y, z    ph, u, v    y, u, v, C   
u, B, v, z
Allowed substitution hints:    ph( y, z)    C( z)

Proof of Theorem eqsupti
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 supmoti.ti . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
21adantlr 469 . . . 4  |-  ( ( ( ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
3 breq1 3938 . . . . . . . . . 10  |-  ( x  =  C  ->  (
x R y  <->  C R
y ) )
43notbid 657 . . . . . . . . 9  |-  ( x  =  C  ->  ( -.  x R y  <->  -.  C R y ) )
54ralbidv 2438 . . . . . . . 8  |-  ( x  =  C  ->  ( A. y  e.  B  -.  x R y  <->  A. y  e.  B  -.  C R y ) )
6 breq2 3939 . . . . . . . . . 10  |-  ( x  =  C  ->  (
y R x  <->  y R C ) )
76imbi1d 230 . . . . . . . . 9  |-  ( x  =  C  ->  (
( y R x  ->  E. z  e.  B  y R z )  <->  ( y R C  ->  E. z  e.  B  y R
z ) ) )
87ralbidv 2438 . . . . . . . 8  |-  ( x  =  C  ->  ( A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z )  <->  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R
z ) ) )
95, 8anbi12d 465 . . . . . . 7  |-  ( x  =  C  ->  (
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )  <->  ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) ) )
109rspcev 2792 . . . . . 6  |-  ( ( C  e.  A  /\  ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R z ) ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
11103impb 1178 . . . . 5  |-  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
1211adantl 275 . . . 4  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
132, 12supval2ti 6888 . . 3  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  sup ( B ,  A ,  R )  =  (
iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) ) )
14 3simpc 981 . . . . 5  |-  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) )  ->  ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )
1514adantl 275 . . . 4  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )
16 simpr1 988 . . . . 5  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  C  e.  A )
172, 12supeuti 6887 . . . . 5  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
189riota2 5758 . . . . 5  |-  ( ( C  e.  A  /\  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )  ->  ( ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R z ) )  <-> 
( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )  =  C ) )
1916, 17, 18syl2anc 409 . . . 4  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  ( ( A. y  e.  B  -.  C R y  /\  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R z ) )  <-> 
( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )  =  C ) )
2015, 19mpbid 146 . . 3  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )  =  C )
2113, 20eqtrd 2173 . 2  |-  ( (
ph  /\  ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) ) )  ->  sup ( B ,  A ,  R )  =  C )
2221ex 114 1  |-  ( ph  ->  ( ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  (
y R C  ->  E. z  e.  B  y R z ) )  ->  sup ( B ,  A ,  R )  =  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418   E!wreu 2419   class class class wbr 3935   iota_crio 5735   supcsup 6875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-un 3078  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-br 3936  df-iota 5094  df-riota 5736  df-sup 6877
This theorem is referenced by:  eqsuptid  6890  eqinfti  6913  maxabs  11011  xrmaxif  11050  bezoutlemsup  11726  suplociccex  12804
  Copyright terms: Public domain W3C validator