Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsupti | Unicode version |
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.) |
Ref | Expression |
---|---|
supmoti.ti |
Ref | Expression |
---|---|
eqsupti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmoti.ti | . . . . 5 | |
2 | 1 | adantlr 469 | . . . 4 |
3 | breq1 3985 | . . . . . . . . . 10 | |
4 | 3 | notbid 657 | . . . . . . . . 9 |
5 | 4 | ralbidv 2466 | . . . . . . . 8 |
6 | breq2 3986 | . . . . . . . . . 10 | |
7 | 6 | imbi1d 230 | . . . . . . . . 9 |
8 | 7 | ralbidv 2466 | . . . . . . . 8 |
9 | 5, 8 | anbi12d 465 | . . . . . . 7 |
10 | 9 | rspcev 2830 | . . . . . 6 |
11 | 10 | 3impb 1189 | . . . . 5 |
12 | 11 | adantl 275 | . . . 4 |
13 | 2, 12 | supval2ti 6960 | . . 3 |
14 | 3simpc 986 | . . . . 5 | |
15 | 14 | adantl 275 | . . . 4 |
16 | simpr1 993 | . . . . 5 | |
17 | 2, 12 | supeuti 6959 | . . . . 5 |
18 | 9 | riota2 5820 | . . . . 5 |
19 | 16, 17, 18 | syl2anc 409 | . . . 4 |
20 | 15, 19 | mpbid 146 | . . 3 |
21 | 13, 20 | eqtrd 2198 | . 2 |
22 | 21 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 wrex 2445 wreu 2446 class class class wbr 3982 crio 5797 csup 6947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-riota 5798 df-sup 6949 |
This theorem is referenced by: eqsuptid 6962 eqinfti 6985 maxabs 11151 xrmaxif 11192 suprzcl2dc 11888 bezoutlemsup 11942 suplociccex 13243 |
Copyright terms: Public domain | W3C validator |