| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsupti | Unicode version | ||
| Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.) |
| Ref | Expression |
|---|---|
| supmoti.ti |
|
| Ref | Expression |
|---|---|
| eqsupti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmoti.ti |
. . . . 5
| |
| 2 | 1 | adantlr 477 |
. . . 4
|
| 3 | breq1 4086 |
. . . . . . . . . 10
| |
| 4 | 3 | notbid 671 |
. . . . . . . . 9
|
| 5 | 4 | ralbidv 2530 |
. . . . . . . 8
|
| 6 | breq2 4087 |
. . . . . . . . . 10
| |
| 7 | 6 | imbi1d 231 |
. . . . . . . . 9
|
| 8 | 7 | ralbidv 2530 |
. . . . . . . 8
|
| 9 | 5, 8 | anbi12d 473 |
. . . . . . 7
|
| 10 | 9 | rspcev 2907 |
. . . . . 6
|
| 11 | 10 | 3impb 1223 |
. . . . 5
|
| 12 | 11 | adantl 277 |
. . . 4
|
| 13 | 2, 12 | supval2ti 7162 |
. . 3
|
| 14 | 3simpc 1020 |
. . . . 5
| |
| 15 | 14 | adantl 277 |
. . . 4
|
| 16 | simpr1 1027 |
. . . . 5
| |
| 17 | 2, 12 | supeuti 7161 |
. . . . 5
|
| 18 | 9 | riota2 5978 |
. . . . 5
|
| 19 | 16, 17, 18 | syl2anc 411 |
. . . 4
|
| 20 | 15, 19 | mpbid 147 |
. . 3
|
| 21 | 13, 20 | eqtrd 2262 |
. 2
|
| 22 | 21 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-riota 5954 df-sup 7151 |
| This theorem is referenced by: eqsuptid 7164 eqinfti 7187 suprzcl2dc 10459 maxabs 11720 xrmaxif 11762 bezoutlemsup 12530 suplociccex 15299 |
| Copyright terms: Public domain | W3C validator |