Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsupti | Unicode version |
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Jim Kingdon, 23-Nov-2021.) |
Ref | Expression |
---|---|
supmoti.ti |
Ref | Expression |
---|---|
eqsupti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmoti.ti | . . . . 5 | |
2 | 1 | adantlr 474 | . . . 4 |
3 | breq1 3992 | . . . . . . . . . 10 | |
4 | 3 | notbid 662 | . . . . . . . . 9 |
5 | 4 | ralbidv 2470 | . . . . . . . 8 |
6 | breq2 3993 | . . . . . . . . . 10 | |
7 | 6 | imbi1d 230 | . . . . . . . . 9 |
8 | 7 | ralbidv 2470 | . . . . . . . 8 |
9 | 5, 8 | anbi12d 470 | . . . . . . 7 |
10 | 9 | rspcev 2834 | . . . . . 6 |
11 | 10 | 3impb 1194 | . . . . 5 |
12 | 11 | adantl 275 | . . . 4 |
13 | 2, 12 | supval2ti 6972 | . . 3 |
14 | 3simpc 991 | . . . . 5 | |
15 | 14 | adantl 275 | . . . 4 |
16 | simpr1 998 | . . . . 5 | |
17 | 2, 12 | supeuti 6971 | . . . . 5 |
18 | 9 | riota2 5831 | . . . . 5 |
19 | 16, 17, 18 | syl2anc 409 | . . . 4 |
20 | 15, 19 | mpbid 146 | . . 3 |
21 | 13, 20 | eqtrd 2203 | . 2 |
22 | 21 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 wreu 2450 class class class wbr 3989 crio 5808 csup 6959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-riota 5809 df-sup 6961 |
This theorem is referenced by: eqsuptid 6974 eqinfti 6997 maxabs 11173 xrmaxif 11214 suprzcl2dc 11910 bezoutlemsup 11964 suplociccex 13397 |
Copyright terms: Public domain | W3C validator |