Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > find | Unicode version |
Description: The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that is a set of natural numbers, zero belongs to , and given any member of the member's successor also belongs to . The conclusion is that every natural number is in . (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
find.1 |
Ref | Expression |
---|---|
find |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | find.1 | . . 3 | |
2 | 1 | simp1i 1001 | . 2 |
3 | 3simpc 991 | . . . . 5 | |
4 | 1, 3 | ax-mp 5 | . . . 4 |
5 | df-ral 2453 | . . . . . 6 | |
6 | alral 2515 | . . . . . 6 | |
7 | 5, 6 | sylbi 120 | . . . . 5 |
8 | 7 | anim2i 340 | . . . 4 |
9 | 4, 8 | ax-mp 5 | . . 3 |
10 | peano5 4582 | . . 3 | |
11 | 9, 10 | ax-mp 5 | . 2 |
12 | 2, 11 | eqssi 3163 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wal 1346 wceq 1348 wcel 2141 wral 2448 wss 3121 c0 3414 csuc 4350 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |