ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  find Unicode version

Theorem find 4648
Description: The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that  A is a set of natural numbers, zero belongs to 
A, and given any member of  A the member's successor also belongs to  A. The conclusion is that every natural number is in  A. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
find.1  |-  ( A 
C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
Assertion
Ref Expression
find  |-  A  =  om
Distinct variable group:    x, A

Proof of Theorem find
StepHypRef Expression
1 find.1 . . 3  |-  ( A 
C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
21simp1i 1009 . 2  |-  A  C_  om
3 3simpc 999 . . . . 5  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
41, 3ax-mp 5 . . . 4  |-  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
5 df-ral 2489 . . . . . 6  |-  ( A. x  e.  A  suc  x  e.  A  <->  A. x
( x  e.  A  ->  suc  x  e.  A
) )
6 alral 2551 . . . . . 6  |-  ( A. x ( x  e.  A  ->  suc  x  e.  A )  ->  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )
75, 6sylbi 121 . . . . 5  |-  ( A. x  e.  A  suc  x  e.  A  ->  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )
87anim2i 342 . . . 4  |-  ( (
(/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )
94, 8ax-mp 5 . . 3  |-  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )
10 peano5 4647 . . 3  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
119, 10ax-mp 5 . 2  |-  om  C_  A
122, 11eqssi 3209 1  |-  A  =  om
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981   A.wal 1371    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   (/)c0 3460   suc csuc 4413   omcom 4639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886  df-suc 4419  df-iom 4640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator