ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  find Unicode version

Theorem find 4583
Description: The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that  A is a set of natural numbers, zero belongs to 
A, and given any member of  A the member's successor also belongs to  A. The conclusion is that every natural number is in  A. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
find.1  |-  ( A 
C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
Assertion
Ref Expression
find  |-  A  =  om
Distinct variable group:    x, A

Proof of Theorem find
StepHypRef Expression
1 find.1 . . 3  |-  ( A 
C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
21simp1i 1001 . 2  |-  A  C_  om
3 3simpc 991 . . . . 5  |-  ( ( A  C_  om  /\  (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A ) )
41, 3ax-mp 5 . . . 4  |-  ( (/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )
5 df-ral 2453 . . . . . 6  |-  ( A. x  e.  A  suc  x  e.  A  <->  A. x
( x  e.  A  ->  suc  x  e.  A
) )
6 alral 2515 . . . . . 6  |-  ( A. x ( x  e.  A  ->  suc  x  e.  A )  ->  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )
75, 6sylbi 120 . . . . 5  |-  ( A. x  e.  A  suc  x  e.  A  ->  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )
87anim2i 340 . . . 4  |-  ( (
(/)  e.  A  /\  A. x  e.  A  suc  x  e.  A )  ->  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) ) )
94, 8ax-mp 5 . . 3  |-  ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A ) )
10 peano5 4582 . . 3  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
119, 10ax-mp 5 . 2  |-  om  C_  A
122, 11eqssi 3163 1  |-  A  =  om
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973   A.wal 1346    = wceq 1348    e. wcel 2141   A.wral 2448    C_ wss 3121   (/)c0 3414   suc csuc 4350   omcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator