ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9cn Unicode version

Theorem 9cn 8945
Description: The number 9 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
9cn  |-  9  e.  CC

Proof of Theorem 9cn
StepHypRef Expression
1 9re 8944 . 2  |-  9  e.  RR
21recni 7911 1  |-  9  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   CCcc 7751   9c9 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923
This theorem is referenced by:  10m1e9  9417  9t2e18  9443  9t8e72  9449  9t9e81  9450  9t11e99  9451  0.999...  11462  cos2bnd  11701  3dvdsdec  11802  3dvds2dec  11803
  Copyright terms: Public domain W3C validator