ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9cn Unicode version

Theorem 9cn 9198
Description: The number 9 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
9cn  |-  9  e.  CC

Proof of Theorem 9cn
StepHypRef Expression
1 9re 9197 . 2  |-  9  e.  RR
21recni 8158 1  |-  9  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   CCcc 7997   9c9 9168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176
This theorem is referenced by:  10m1e9  9673  9t2e18  9699  9t8e72  9705  9t9e81  9706  9t11e99  9707  0.999...  12032  cos2bnd  12271  3dvds  12375  3dvdsdec  12376  3dvds2dec  12377  2exp8  12958
  Copyright terms: Public domain W3C validator