ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9cn Unicode version

Theorem 9cn 9095
Description: The number 9 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
9cn  |-  9  e.  CC

Proof of Theorem 9cn
StepHypRef Expression
1 9re 9094 . 2  |-  9  e.  RR
21recni 8055 1  |-  9  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   CCcc 7894   9c9 9065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073
This theorem is referenced by:  10m1e9  9569  9t2e18  9595  9t8e72  9601  9t9e81  9602  9t11e99  9603  0.999...  11703  cos2bnd  11942  3dvds  12046  3dvdsdec  12047  3dvds2dec  12048  2exp8  12629
  Copyright terms: Public domain W3C validator