ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9cn Unicode version

Theorem 9cn 8808
Description: The number 9 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
9cn  |-  9  e.  CC

Proof of Theorem 9cn
StepHypRef Expression
1 9re 8807 . 2  |-  9  e.  RR
21recni 7778 1  |-  9  e.  CC
Colors of variables: wff set class
Syntax hints:    e. wcel 1480   CCcc 7618   9c9 8778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-resscn 7712  ax-1re 7714  ax-addrcl 7717
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-in 3077  df-ss 3084  df-2 8779  df-3 8780  df-4 8781  df-5 8782  df-6 8783  df-7 8784  df-8 8785  df-9 8786
This theorem is referenced by:  10m1e9  9277  9t2e18  9303  9t8e72  9309  9t9e81  9310  9t11e99  9311  0.999...  11290  cos2bnd  11467  3dvdsdec  11562  3dvds2dec  11563
  Copyright terms: Public domain W3C validator