| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le0 | Unicode version | ||
| Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0le0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8072 |
. 2
| |
| 2 | 1 | leidi 8558 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-rnegex 8034 ax-pre-ltirr 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 |
| This theorem is referenced by: nn0ge0 9320 nn0ledivnn 9889 xsubge0 10003 0e0icopnf 10101 0e0iccpnf 10102 0elunit 10108 q0mod 10500 exp0 10688 sqrt0rlem 11314 sqrt00 11351 xrmaxadd 11572 fsumabs 11776 pcmptdvds 12668 trilpolemclim 15975 trilpolemlt1 15980 nconstwlpolemgt0 16003 |
| Copyright terms: Public domain | W3C validator |