| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le0 | Unicode version | ||
| Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0le0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8074 |
. 2
| |
| 2 | 1 | leidi 8560 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 ax-rnegex 8036 ax-pre-ltirr 8039 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-xp 4682 df-cnv 4684 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 |
| This theorem is referenced by: nn0ge0 9322 nn0ledivnn 9891 xsubge0 10005 0e0icopnf 10103 0e0iccpnf 10104 0elunit 10110 q0mod 10502 exp0 10690 sqrt0rlem 11347 sqrt00 11384 xrmaxadd 11605 fsumabs 11809 pcmptdvds 12701 trilpolemclim 16012 trilpolemlt1 16017 nconstwlpolemgt0 16040 |
| Copyright terms: Public domain | W3C validator |