| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0le0 | Unicode version | ||
| Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0le0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8146 |
. 2
| |
| 2 | 1 | leidi 8632 |
1
|
| Colors of variables: wff set class |
| Syntax hints: class class
class wbr 4083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-rnegex 8108 ax-pre-ltirr 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 |
| This theorem is referenced by: nn0ge0 9394 nn0ledivnn 9963 xsubge0 10077 0e0icopnf 10175 0e0iccpnf 10176 0elunit 10182 q0mod 10577 exp0 10765 sqrt0rlem 11514 sqrt00 11551 xrmaxadd 11772 fsumabs 11976 pcmptdvds 12868 trilpolemclim 16404 trilpolemlt1 16409 nconstwlpolemgt0 16432 |
| Copyright terms: Public domain | W3C validator |