ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0le0 Unicode version

Theorem 0le0 9127
Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
0le0  |-  0  <_  0

Proof of Theorem 0le0
StepHypRef Expression
1 0re 8074 . 2  |-  0  e.  RR
21leidi 8560 1  |-  0  <_  0
Colors of variables: wff set class
Syntax hints:   class class class wbr 4045   0cc0 7927    <_ cle 8110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024  ax-rnegex 8036  ax-pre-ltirr 8039
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-cnv 4684  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115
This theorem is referenced by:  nn0ge0  9322  nn0ledivnn  9891  xsubge0  10005  0e0icopnf  10103  0e0iccpnf  10104  0elunit  10110  q0mod  10502  exp0  10690  sqrt0rlem  11347  sqrt00  11384  xrmaxadd  11605  fsumabs  11809  pcmptdvds  12701  trilpolemclim  16012  trilpolemlt1  16017  nconstwlpolemgt0  16040
  Copyright terms: Public domain W3C validator