ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9cn GIF version

Theorem 9cn 8966
Description: The number 9 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
9cn 9 ∈ ℂ

Proof of Theorem 9cn
StepHypRef Expression
1 9re 8965 . 2 9 ∈ ℝ
21recni 7932 1 9 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2141  cc 7772  9c9 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-in 3127  df-ss 3134  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944
This theorem is referenced by:  10m1e9  9438  9t2e18  9464  9t8e72  9470  9t9e81  9471  9t11e99  9472  0.999...  11484  cos2bnd  11723  3dvdsdec  11824  3dvds2dec  11825
  Copyright terms: Public domain W3C validator