ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9cn GIF version

Theorem 9cn 9097
Description: The number 9 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
9cn 9 ∈ ℂ

Proof of Theorem 9cn
StepHypRef Expression
1 9re 9096 . 2 9 ∈ ℝ
21recni 8057 1 9 ∈ ℂ
Colors of variables: wff set class
Syntax hints:  wcel 2167  cc 7896  9c9 9067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7990  ax-1re 7992  ax-addrcl 7995
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075
This theorem is referenced by:  10m1e9  9571  9t2e18  9597  9t8e72  9603  9t9e81  9604  9t11e99  9605  0.999...  11705  cos2bnd  11944  3dvds  12048  3dvdsdec  12049  3dvds2dec  12050  2exp8  12631
  Copyright terms: Public domain W3C validator