ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9re Unicode version

Theorem 9re 8717
Description: The number 9 is real. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
9re  |-  9  e.  RR

Proof of Theorem 9re
StepHypRef Expression
1 df-9 8696 . 2  |-  9  =  ( 8  +  1 )
2 8re 8715 . . 3  |-  8  e.  RR
3 1re 7689 . . 3  |-  1  e.  RR
42, 3readdcli 7703 . 2  |-  ( 8  +  1 )  e.  RR
51, 4eqeltri 2187 1  |-  9  e.  RR
Colors of variables: wff set class
Syntax hints:    e. wcel 1463  (class class class)co 5728   RRcr 7546   1c1 7548    + caddc 7550   8c8 8687   9c9 8688
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-4 1470  ax-17 1489  ax-ial 1497  ax-ext 2097  ax-1re 7639  ax-addrcl 7642
This theorem depends on definitions:  df-bi 116  df-cleq 2108  df-clel 2111  df-2 8689  df-3 8690  df-4 8691  df-5 8692  df-6 8693  df-7 8694  df-8 8695  df-9 8696
This theorem is referenced by:  9cn  8718  7lt9  8822  6lt9  8823  5lt9  8824  4lt9  8825  3lt9  8826  2lt9  8827  1lt9  8828  9lt10  9216  8lt10  9217  0.999...  11182  cos2bnd  11318  sincos2sgn  11323  setsmsdsg  12469
  Copyright terms: Public domain W3C validator