| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9re | Unicode version | ||
| Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 9re |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 9176 |
. 2
| |
| 2 | 8re 9195 |
. . 3
| |
| 3 | 1re 8145 |
. . 3
| |
| 4 | 2, 3 | readdcli 8159 |
. 2
|
| 5 | 1, 4 | eqeltri 2302 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 |
| This theorem is referenced by: 9cn 9198 7lt9 9309 6lt9 9310 5lt9 9311 4lt9 9312 3lt9 9313 2lt9 9314 1lt9 9315 9lt10 9708 8lt10 9709 0.999... 12032 cos2bnd 12271 sincos2sgn 12277 slotsdifplendx 13243 dsndxntsetndx 13257 unifndxntsetndx 13264 setsmsdsg 15154 2logb9irr 15645 2logb9irrap 15651 |
| Copyright terms: Public domain | W3C validator |