ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dvds Unicode version

Theorem 3dvds 12029
Description: A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
3dvds  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
Distinct variable groups:    k, F    k, N

Proof of Theorem 3dvds
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 3z 9355 . . 3  |-  3  e.  ZZ
21a1i 9 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  e.  ZZ )
3 0zd 9338 . . . 4  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  0  e.  ZZ )
4 nn0z 9346 . . . . 5  |-  ( N  e.  NN0  ->  N  e.  ZZ )
54adantr 276 . . . 4  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  N  e.  ZZ )
63, 5fzfigd 10523 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 0 ... N )  e.  Fin )
7 ffvelcdm 5695 . . . . 5  |-  ( ( F : ( 0 ... N ) --> ZZ 
/\  k  e.  ( 0 ... N ) )  ->  ( F `  k )  e.  ZZ )
87adantll 476 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( F `  k )  e.  ZZ )
9 10nn 9472 . . . . . 6  |- ; 1 0  e.  NN
109nnzi 9347 . . . . 5  |- ; 1 0  e.  ZZ
11 elfznn0 10189 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
1211adantl 277 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
13 zexpcl 10646 . . . . 5  |-  ( (; 1
0  e.  ZZ  /\  k  e.  NN0 )  -> 
(; 1 0 ^ k
)  e.  ZZ )
1410, 12, 13sylancr 414 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (; 1 0 ^ k )  e.  ZZ )
158, 14zmulcld 9454 . . 3  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  (; 1 0 ^ k
) )  e.  ZZ )
166, 15fsumzcl 11567 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( ( F `  k )  x.  (; 1 0 ^ k ) )  e.  ZZ )
176, 8fsumzcl 11567 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( F `  k
)  e.  ZZ )
1815, 8zsubcld 9453 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( F `  k )  x.  (; 1 0 ^ k ) )  -  ( F `  k ) )  e.  ZZ )
19 ax-1cn 7972 . . . . . . . . . . . 12  |-  1  e.  CC
209nncni 9000 . . . . . . . . . . . 12  |- ; 1 0  e.  CC
2119, 20negsubdi2i 8312 . . . . . . . . . . 11  |-  -u (
1  - ; 1 0 )  =  (; 1 0  -  1 )
22 9p1e10 9459 . . . . . . . . . . . . 13  |-  ( 9  +  1 )  = ; 1
0
2322eqcomi 2200 . . . . . . . . . . . 12  |- ; 1 0  =  ( 9  +  1 )
2423oveq1i 5932 . . . . . . . . . . 11  |-  (; 1 0  -  1 )  =  ( ( 9  +  1 )  -  1 )
25 9cn 9078 . . . . . . . . . . . 12  |-  9  e.  CC
2625, 19pncan3oi 8242 . . . . . . . . . . 11  |-  ( ( 9  +  1 )  -  1 )  =  9
2721, 24, 263eqtri 2221 . . . . . . . . . 10  |-  -u (
1  - ; 1 0 )  =  9
28 3t3e9 9148 . . . . . . . . . 10  |-  ( 3  x.  3 )  =  9
2927, 28eqtr4i 2220 . . . . . . . . 9  |-  -u (
1  - ; 1 0 )  =  ( 3  x.  3 )
3020a1i 9 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  -> ; 1 0  e.  CC )
31 1re 8025 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
32 10re 9475 . . . . . . . . . . . . . . . . 17  |- ; 1 0  e.  RR
33 1lt10 9595 . . . . . . . . . . . . . . . . 17  |-  1  < ; 1
0
3431, 32, 33gtapii 8661 . . . . . . . . . . . . . . . 16  |- ; 1 0 #  1
3534a1i 9 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  -> ; 1 0 #  1 )
36 id 19 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
3730, 35, 36geoserap 11672 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  sum_ j  e.  ( 0 ... (
k  -  1 ) ) (; 1 0 ^ j
)  =  ( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) ) )
38 0zd 9338 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  0  e.  ZZ )
39 nn0z 9346 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  ZZ )
40 peano2zm 9364 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
4139, 40syl 14 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( k  -  1 )  e.  ZZ )
4238, 41fzfigd 10523 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 0 ... ( k  - 
1 ) )  e. 
Fin )
43 elfznn0 10189 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 0 ... ( k  -  1 ) )  ->  j  e.  NN0 )
4443adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN0  /\  j  e.  ( 0 ... ( k  - 
1 ) ) )  ->  j  e.  NN0 )
45 zexpcl 10646 . . . . . . . . . . . . . . . 16  |-  ( (; 1
0  e.  ZZ  /\  j  e.  NN0 )  -> 
(; 1 0 ^ j
)  e.  ZZ )
4610, 44, 45sylancr 414 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN0  /\  j  e.  ( 0 ... ( k  - 
1 ) ) )  ->  (; 1 0 ^ j
)  e.  ZZ )
4742, 46fsumzcl 11567 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  sum_ j  e.  ( 0 ... (
k  -  1 ) ) (; 1 0 ^ j
)  e.  ZZ )
4837, 47eqeltrrd 2274 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) )  e.  ZZ )
49 1z 9352 . . . . . . . . . . . . . . 15  |-  1  e.  ZZ
50 zsubcl 9367 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  ZZ  /\ ; 1 0  e.  ZZ )  -> 
( 1  - ; 1 0 )  e.  ZZ )
5149, 10, 50mp2an 426 . . . . . . . . . . . . . 14  |-  ( 1  - ; 1 0 )  e.  ZZ
5231, 33ltneii 8123 . . . . . . . . . . . . . . 15  |-  1  =/= ; 1 0
5319, 20subeq0i 8306 . . . . . . . . . . . . . . . 16  |-  ( ( 1  - ; 1 0 )  =  0  <->  1  = ; 1 0 )
5453necon3bii 2405 . . . . . . . . . . . . . . 15  |-  ( ( 1  - ; 1 0 )  =/=  0  <->  1  =/= ; 1 0 )
5552, 54mpbir 146 . . . . . . . . . . . . . 14  |-  ( 1  - ; 1 0 )  =/=  0
5610, 36, 13sylancr 414 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  (; 1 0 ^ k
)  e.  ZZ )
57 zsubcl 9367 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  ZZ  /\  (; 1 0 ^ k )  e.  ZZ )  -> 
( 1  -  (; 1 0 ^ k ) )  e.  ZZ )
5849, 56, 57sylancr 414 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  -  (; 1 0 ^ k
) )  e.  ZZ )
59 dvdsval2 11955 . . . . . . . . . . . . . 14  |-  ( ( ( 1  - ; 1 0 )  e.  ZZ  /\  ( 1  - ; 1 0 )  =/=  0  /\  ( 1  -  (; 1 0 ^ k
) )  e.  ZZ )  ->  ( ( 1  - ; 1 0 )  ||  ( 1  -  (; 1 0 ^ k ) )  <-> 
( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) )  e.  ZZ ) )
6051, 55, 58, 59mp3an12i 1352 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  - ; 1 0 )  ||  ( 1  -  (; 1 0 ^ k ) )  <-> 
( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) )  e.  ZZ ) )
6148, 60mpbird 167 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 1  - ; 1 0 )  ||  ( 1  -  (; 1 0 ^ k ) ) )
6256zcnd 9449 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  (; 1 0 ^ k
)  e.  CC )
63 negsubdi2 8285 . . . . . . . . . . . . 13  |-  ( ( (; 1 0 ^ k
)  e.  CC  /\  1  e.  CC )  -> 
-u ( (; 1 0 ^ k
)  -  1 )  =  ( 1  -  (; 1 0 ^ k
) ) )
6462, 19, 63sylancl 413 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  -u (
(; 1 0 ^ k
)  -  1 )  =  ( 1  -  (; 1 0 ^ k
) ) )
6561, 64breqtrrd 4061 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 1  - ; 1 0 )  ||  -u ( (; 1 0 ^ k
)  -  1 ) )
66 peano2zm 9364 . . . . . . . . . . . . 13  |-  ( (; 1
0 ^ k )  e.  ZZ  ->  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )
6756, 66syl 14 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( (; 1
0 ^ k )  -  1 )  e.  ZZ )
68 dvdsnegb 11973 . . . . . . . . . . . 12  |-  ( ( ( 1  - ; 1 0 )  e.  ZZ  /\  ( (; 1
0 ^ k )  -  1 )  e.  ZZ )  ->  (
( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <-> 
( 1  - ; 1 0 )  ||  -u ( (; 1 0 ^ k
)  -  1 ) ) )
6951, 67, 68sylancr 414 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <-> 
( 1  - ; 1 0 )  ||  -u ( (; 1 0 ^ k
)  -  1 ) ) )
7065, 69mpbird 167 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) )
71 negdvdsb 11972 . . . . . . . . . . 11  |-  ( ( ( 1  - ; 1 0 )  e.  ZZ  /\  ( (; 1
0 ^ k )  -  1 )  e.  ZZ )  ->  (
( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <->  -u ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) ) )
7251, 67, 71sylancr 414 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <->  -u ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) ) )
7370, 72mpbid 147 . . . . . . . . 9  |-  ( k  e.  NN0  ->  -u (
1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) )
7429, 73eqbrtrrid 4069 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( 3  x.  3 )  ||  ( (; 1 0 ^ k
)  -  1 ) )
75 muldvds1 11981 . . . . . . . . 9  |-  ( ( 3  e.  ZZ  /\  3  e.  ZZ  /\  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )  -> 
( ( 3  x.  3 )  ||  (
(; 1 0 ^ k
)  -  1 )  ->  3  ||  (
(; 1 0 ^ k
)  -  1 ) ) )
761, 1, 67, 75mp3an12i 1352 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 3  x.  3 ) 
||  ( (; 1 0 ^ k
)  -  1 )  ->  3  ||  (
(; 1 0 ^ k
)  -  1 ) ) )
7774, 76mpd 13 . . . . . . 7  |-  ( k  e.  NN0  ->  3  ||  ( (; 1 0 ^ k
)  -  1 ) )
7812, 77syl 14 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( (; 1 0 ^ k
)  -  1 ) )
7914, 66syl 14 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )
80 dvdsmultr2 11998 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  ( F `  k )  e.  ZZ  /\  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )  -> 
( 3  ||  (
(; 1 0 ^ k
)  -  1 )  ->  3  ||  (
( F `  k
)  x.  ( (; 1
0 ^ k )  -  1 ) ) ) )
811, 8, 79, 80mp3an2i 1353 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
3  ||  ( (; 1 0 ^ k )  - 
1 )  ->  3  ||  ( ( F `  k )  x.  (
(; 1 0 ^ k
)  -  1 ) ) ) )
8278, 81mpd 13 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( F `  k )  x.  (
(; 1 0 ^ k
)  -  1 ) ) )
838zcnd 9449 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( F `  k )  e.  CC )
8414zcnd 9449 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (; 1 0 ^ k )  e.  CC )
8583, 84muls1d 8444 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( (; 1
0 ^ k )  -  1 ) )  =  ( ( ( F `  k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
) )
8682, 85breqtrd 4059 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( ( F `
 k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
) )
876, 2, 18, 86fsumdvds 12007 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  ||  sum_ k  e.  ( 0 ... N
) ( ( ( F `  k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
) )
8815zcnd 9449 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  (; 1 0 ^ k
) )  e.  CC )
896, 88, 83fsumsub 11617 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( ( ( F `
 k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
)  =  ( sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
9087, 89breqtrd 4059 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  ||  ( sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
91 dvdssub2 12000 . 2  |-  ( ( ( 3  e.  ZZ  /\ 
sum_ k  e.  ( 0 ... N ) ( ( F `  k )  x.  (; 1 0 ^ k ) )  e.  ZZ  /\  sum_ k  e.  ( 0 ... N ) ( F `  k )  e.  ZZ )  /\  3  ||  ( sum_ k  e.  ( 0 ... N
) ( ( F `
 k )  x.  (; 1 0 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )  ->  (
3  ||  sum_ k  e.  ( 0 ... N
) ( ( F `
 k )  x.  (; 1 0 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
922, 16, 17, 90, 91syl31anc 1252 1  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4033   -->wf 5254   ` cfv 5258  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    - cmin 8197   -ucneg 8198   # cap 8608    / cdiv 8699   3c3 9042   9c9 9048   NN0cn0 9249   ZZcz 9326  ;cdc 9457   ...cfz 10083   ^cexp 10630   sum_csu 11518    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-dec 9458  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-dvds 11953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator