ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dvds Unicode version

Theorem 3dvds 12219
Description: A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
3dvds  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
Distinct variable groups:    k, F    k, N

Proof of Theorem 3dvds
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 3z 9408 . . 3  |-  3  e.  ZZ
21a1i 9 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  e.  ZZ )
3 0zd 9391 . . . 4  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  0  e.  ZZ )
4 nn0z 9399 . . . . 5  |-  ( N  e.  NN0  ->  N  e.  ZZ )
54adantr 276 . . . 4  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  N  e.  ZZ )
63, 5fzfigd 10583 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 0 ... N )  e.  Fin )
7 ffvelcdm 5720 . . . . 5  |-  ( ( F : ( 0 ... N ) --> ZZ 
/\  k  e.  ( 0 ... N ) )  ->  ( F `  k )  e.  ZZ )
87adantll 476 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( F `  k )  e.  ZZ )
9 10nn 9526 . . . . . 6  |- ; 1 0  e.  NN
109nnzi 9400 . . . . 5  |- ; 1 0  e.  ZZ
11 elfznn0 10243 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
1211adantl 277 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
13 zexpcl 10706 . . . . 5  |-  ( (; 1
0  e.  ZZ  /\  k  e.  NN0 )  -> 
(; 1 0 ^ k
)  e.  ZZ )
1410, 12, 13sylancr 414 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (; 1 0 ^ k )  e.  ZZ )
158, 14zmulcld 9508 . . 3  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  (; 1 0 ^ k
) )  e.  ZZ )
166, 15fsumzcl 11757 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( ( F `  k )  x.  (; 1 0 ^ k ) )  e.  ZZ )
176, 8fsumzcl 11757 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( F `  k
)  e.  ZZ )
1815, 8zsubcld 9507 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( F `  k )  x.  (; 1 0 ^ k ) )  -  ( F `  k ) )  e.  ZZ )
19 ax-1cn 8025 . . . . . . . . . . . 12  |-  1  e.  CC
209nncni 9053 . . . . . . . . . . . 12  |- ; 1 0  e.  CC
2119, 20negsubdi2i 8365 . . . . . . . . . . 11  |-  -u (
1  - ; 1 0 )  =  (; 1 0  -  1 )
22 9p1e10 9513 . . . . . . . . . . . . 13  |-  ( 9  +  1 )  = ; 1
0
2322eqcomi 2210 . . . . . . . . . . . 12  |- ; 1 0  =  ( 9  +  1 )
2423oveq1i 5961 . . . . . . . . . . 11  |-  (; 1 0  -  1 )  =  ( ( 9  +  1 )  -  1 )
25 9cn 9131 . . . . . . . . . . . 12  |-  9  e.  CC
2625, 19pncan3oi 8295 . . . . . . . . . . 11  |-  ( ( 9  +  1 )  -  1 )  =  9
2721, 24, 263eqtri 2231 . . . . . . . . . 10  |-  -u (
1  - ; 1 0 )  =  9
28 3t3e9 9201 . . . . . . . . . 10  |-  ( 3  x.  3 )  =  9
2927, 28eqtr4i 2230 . . . . . . . . 9  |-  -u (
1  - ; 1 0 )  =  ( 3  x.  3 )
3020a1i 9 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  -> ; 1 0  e.  CC )
31 1re 8078 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
32 10re 9529 . . . . . . . . . . . . . . . . 17  |- ; 1 0  e.  RR
33 1lt10 9649 . . . . . . . . . . . . . . . . 17  |-  1  < ; 1
0
3431, 32, 33gtapii 8714 . . . . . . . . . . . . . . . 16  |- ; 1 0 #  1
3534a1i 9 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  -> ; 1 0 #  1 )
36 id 19 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
3730, 35, 36geoserap 11862 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  sum_ j  e.  ( 0 ... (
k  -  1 ) ) (; 1 0 ^ j
)  =  ( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) ) )
38 0zd 9391 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  0  e.  ZZ )
39 nn0z 9399 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  ZZ )
40 peano2zm 9417 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
4139, 40syl 14 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( k  -  1 )  e.  ZZ )
4238, 41fzfigd 10583 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 0 ... ( k  - 
1 ) )  e. 
Fin )
43 elfznn0 10243 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 0 ... ( k  -  1 ) )  ->  j  e.  NN0 )
4443adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN0  /\  j  e.  ( 0 ... ( k  - 
1 ) ) )  ->  j  e.  NN0 )
45 zexpcl 10706 . . . . . . . . . . . . . . . 16  |-  ( (; 1
0  e.  ZZ  /\  j  e.  NN0 )  -> 
(; 1 0 ^ j
)  e.  ZZ )
4610, 44, 45sylancr 414 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN0  /\  j  e.  ( 0 ... ( k  - 
1 ) ) )  ->  (; 1 0 ^ j
)  e.  ZZ )
4742, 46fsumzcl 11757 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  sum_ j  e.  ( 0 ... (
k  -  1 ) ) (; 1 0 ^ j
)  e.  ZZ )
4837, 47eqeltrrd 2284 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) )  e.  ZZ )
49 1z 9405 . . . . . . . . . . . . . . 15  |-  1  e.  ZZ
50 zsubcl 9420 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  ZZ  /\ ; 1 0  e.  ZZ )  -> 
( 1  - ; 1 0 )  e.  ZZ )
5149, 10, 50mp2an 426 . . . . . . . . . . . . . 14  |-  ( 1  - ; 1 0 )  e.  ZZ
5231, 33ltneii 8176 . . . . . . . . . . . . . . 15  |-  1  =/= ; 1 0
5319, 20subeq0i 8359 . . . . . . . . . . . . . . . 16  |-  ( ( 1  - ; 1 0 )  =  0  <->  1  = ; 1 0 )
5453necon3bii 2415 . . . . . . . . . . . . . . 15  |-  ( ( 1  - ; 1 0 )  =/=  0  <->  1  =/= ; 1 0 )
5552, 54mpbir 146 . . . . . . . . . . . . . 14  |-  ( 1  - ; 1 0 )  =/=  0
5610, 36, 13sylancr 414 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  (; 1 0 ^ k
)  e.  ZZ )
57 zsubcl 9420 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  ZZ  /\  (; 1 0 ^ k )  e.  ZZ )  -> 
( 1  -  (; 1 0 ^ k ) )  e.  ZZ )
5849, 56, 57sylancr 414 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  -  (; 1 0 ^ k
) )  e.  ZZ )
59 dvdsval2 12145 . . . . . . . . . . . . . 14  |-  ( ( ( 1  - ; 1 0 )  e.  ZZ  /\  ( 1  - ; 1 0 )  =/=  0  /\  ( 1  -  (; 1 0 ^ k
) )  e.  ZZ )  ->  ( ( 1  - ; 1 0 )  ||  ( 1  -  (; 1 0 ^ k ) )  <-> 
( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) )  e.  ZZ ) )
6051, 55, 58, 59mp3an12i 1354 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  - ; 1 0 )  ||  ( 1  -  (; 1 0 ^ k ) )  <-> 
( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) )  e.  ZZ ) )
6148, 60mpbird 167 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 1  - ; 1 0 )  ||  ( 1  -  (; 1 0 ^ k ) ) )
6256zcnd 9503 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  (; 1 0 ^ k
)  e.  CC )
63 negsubdi2 8338 . . . . . . . . . . . . 13  |-  ( ( (; 1 0 ^ k
)  e.  CC  /\  1  e.  CC )  -> 
-u ( (; 1 0 ^ k
)  -  1 )  =  ( 1  -  (; 1 0 ^ k
) ) )
6462, 19, 63sylancl 413 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  -u (
(; 1 0 ^ k
)  -  1 )  =  ( 1  -  (; 1 0 ^ k
) ) )
6561, 64breqtrrd 4075 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 1  - ; 1 0 )  ||  -u ( (; 1 0 ^ k
)  -  1 ) )
66 peano2zm 9417 . . . . . . . . . . . . 13  |-  ( (; 1
0 ^ k )  e.  ZZ  ->  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )
6756, 66syl 14 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( (; 1
0 ^ k )  -  1 )  e.  ZZ )
68 dvdsnegb 12163 . . . . . . . . . . . 12  |-  ( ( ( 1  - ; 1 0 )  e.  ZZ  /\  ( (; 1
0 ^ k )  -  1 )  e.  ZZ )  ->  (
( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <-> 
( 1  - ; 1 0 )  ||  -u ( (; 1 0 ^ k
)  -  1 ) ) )
6951, 67, 68sylancr 414 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <-> 
( 1  - ; 1 0 )  ||  -u ( (; 1 0 ^ k
)  -  1 ) ) )
7065, 69mpbird 167 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) )
71 negdvdsb 12162 . . . . . . . . . . 11  |-  ( ( ( 1  - ; 1 0 )  e.  ZZ  /\  ( (; 1
0 ^ k )  -  1 )  e.  ZZ )  ->  (
( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <->  -u ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) ) )
7251, 67, 71sylancr 414 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <->  -u ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) ) )
7370, 72mpbid 147 . . . . . . . . 9  |-  ( k  e.  NN0  ->  -u (
1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) )
7429, 73eqbrtrrid 4083 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( 3  x.  3 )  ||  ( (; 1 0 ^ k
)  -  1 ) )
75 muldvds1 12171 . . . . . . . . 9  |-  ( ( 3  e.  ZZ  /\  3  e.  ZZ  /\  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )  -> 
( ( 3  x.  3 )  ||  (
(; 1 0 ^ k
)  -  1 )  ->  3  ||  (
(; 1 0 ^ k
)  -  1 ) ) )
761, 1, 67, 75mp3an12i 1354 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 3  x.  3 ) 
||  ( (; 1 0 ^ k
)  -  1 )  ->  3  ||  (
(; 1 0 ^ k
)  -  1 ) ) )
7774, 76mpd 13 . . . . . . 7  |-  ( k  e.  NN0  ->  3  ||  ( (; 1 0 ^ k
)  -  1 ) )
7812, 77syl 14 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( (; 1 0 ^ k
)  -  1 ) )
7914, 66syl 14 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )
80 dvdsmultr2 12188 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  ( F `  k )  e.  ZZ  /\  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )  -> 
( 3  ||  (
(; 1 0 ^ k
)  -  1 )  ->  3  ||  (
( F `  k
)  x.  ( (; 1
0 ^ k )  -  1 ) ) ) )
811, 8, 79, 80mp3an2i 1355 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
3  ||  ( (; 1 0 ^ k )  - 
1 )  ->  3  ||  ( ( F `  k )  x.  (
(; 1 0 ^ k
)  -  1 ) ) ) )
8278, 81mpd 13 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( F `  k )  x.  (
(; 1 0 ^ k
)  -  1 ) ) )
838zcnd 9503 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( F `  k )  e.  CC )
8414zcnd 9503 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (; 1 0 ^ k )  e.  CC )
8583, 84muls1d 8497 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( (; 1
0 ^ k )  -  1 ) )  =  ( ( ( F `  k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
) )
8682, 85breqtrd 4073 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( ( F `
 k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
) )
876, 2, 18, 86fsumdvds 12197 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  ||  sum_ k  e.  ( 0 ... N
) ( ( ( F `  k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
) )
8815zcnd 9503 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  (; 1 0 ^ k
) )  e.  CC )
896, 88, 83fsumsub 11807 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( ( ( F `
 k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
)  =  ( sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
9087, 89breqtrd 4073 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  ||  ( sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
91 dvdssub2 12190 . 2  |-  ( ( ( 3  e.  ZZ  /\ 
sum_ k  e.  ( 0 ... N ) ( ( F `  k )  x.  (; 1 0 ^ k ) )  e.  ZZ  /\  sum_ k  e.  ( 0 ... N ) ( F `  k )  e.  ZZ )  /\  3  ||  ( sum_ k  e.  ( 0 ... N
) ( ( F `
 k )  x.  (; 1 0 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )  ->  (
3  ||  sum_ k  e.  ( 0 ... N
) ( ( F `
 k )  x.  (; 1 0 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
922, 16, 17, 90, 91syl31anc 1253 1  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177    =/= wne 2377   class class class wbr 4047   -->wf 5272   ` cfv 5276  (class class class)co 5951   CCcc 7930   0cc0 7932   1c1 7933    + caddc 7935    x. cmul 7937    - cmin 8250   -ucneg 8251   # cap 8661    / cdiv 8752   3c3 9095   9c9 9101   NN0cn0 9302   ZZcz 9379  ;cdc 9511   ...cfz 10137   ^cexp 10690   sum_csu 11708    || cdvds 12142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-dvds 12143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator