ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dvds Unicode version

Theorem 3dvds 12341
Description: A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
3dvds  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
Distinct variable groups:    k, F    k, N

Proof of Theorem 3dvds
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 3z 9443 . . 3  |-  3  e.  ZZ
21a1i 9 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  e.  ZZ )
3 0zd 9426 . . . 4  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  0  e.  ZZ )
4 nn0z 9434 . . . . 5  |-  ( N  e.  NN0  ->  N  e.  ZZ )
54adantr 276 . . . 4  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  N  e.  ZZ )
63, 5fzfigd 10620 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 0 ... N )  e.  Fin )
7 ffvelcdm 5741 . . . . 5  |-  ( ( F : ( 0 ... N ) --> ZZ 
/\  k  e.  ( 0 ... N ) )  ->  ( F `  k )  e.  ZZ )
87adantll 476 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( F `  k )  e.  ZZ )
9 10nn 9561 . . . . . 6  |- ; 1 0  e.  NN
109nnzi 9435 . . . . 5  |- ; 1 0  e.  ZZ
11 elfznn0 10278 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
1211adantl 277 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
13 zexpcl 10743 . . . . 5  |-  ( (; 1
0  e.  ZZ  /\  k  e.  NN0 )  -> 
(; 1 0 ^ k
)  e.  ZZ )
1410, 12, 13sylancr 414 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (; 1 0 ^ k )  e.  ZZ )
158, 14zmulcld 9543 . . 3  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  (; 1 0 ^ k
) )  e.  ZZ )
166, 15fsumzcl 11879 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( ( F `  k )  x.  (; 1 0 ^ k ) )  e.  ZZ )
176, 8fsumzcl 11879 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( F `  k
)  e.  ZZ )
1815, 8zsubcld 9542 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( F `  k )  x.  (; 1 0 ^ k ) )  -  ( F `  k ) )  e.  ZZ )
19 ax-1cn 8060 . . . . . . . . . . . 12  |-  1  e.  CC
209nncni 9088 . . . . . . . . . . . 12  |- ; 1 0  e.  CC
2119, 20negsubdi2i 8400 . . . . . . . . . . 11  |-  -u (
1  - ; 1 0 )  =  (; 1 0  -  1 )
22 9p1e10 9548 . . . . . . . . . . . . 13  |-  ( 9  +  1 )  = ; 1
0
2322eqcomi 2213 . . . . . . . . . . . 12  |- ; 1 0  =  ( 9  +  1 )
2423oveq1i 5984 . . . . . . . . . . 11  |-  (; 1 0  -  1 )  =  ( ( 9  +  1 )  -  1 )
25 9cn 9166 . . . . . . . . . . . 12  |-  9  e.  CC
2625, 19pncan3oi 8330 . . . . . . . . . . 11  |-  ( ( 9  +  1 )  -  1 )  =  9
2721, 24, 263eqtri 2234 . . . . . . . . . 10  |-  -u (
1  - ; 1 0 )  =  9
28 3t3e9 9236 . . . . . . . . . 10  |-  ( 3  x.  3 )  =  9
2927, 28eqtr4i 2233 . . . . . . . . 9  |-  -u (
1  - ; 1 0 )  =  ( 3  x.  3 )
3020a1i 9 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  -> ; 1 0  e.  CC )
31 1re 8113 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
32 10re 9564 . . . . . . . . . . . . . . . . 17  |- ; 1 0  e.  RR
33 1lt10 9684 . . . . . . . . . . . . . . . . 17  |-  1  < ; 1
0
3431, 32, 33gtapii 8749 . . . . . . . . . . . . . . . 16  |- ; 1 0 #  1
3534a1i 9 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  -> ; 1 0 #  1 )
36 id 19 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
3730, 35, 36geoserap 11984 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  sum_ j  e.  ( 0 ... (
k  -  1 ) ) (; 1 0 ^ j
)  =  ( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) ) )
38 0zd 9426 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  0  e.  ZZ )
39 nn0z 9434 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  ZZ )
40 peano2zm 9452 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
4139, 40syl 14 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( k  -  1 )  e.  ZZ )
4238, 41fzfigd 10620 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 0 ... ( k  - 
1 ) )  e. 
Fin )
43 elfznn0 10278 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 0 ... ( k  -  1 ) )  ->  j  e.  NN0 )
4443adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN0  /\  j  e.  ( 0 ... ( k  - 
1 ) ) )  ->  j  e.  NN0 )
45 zexpcl 10743 . . . . . . . . . . . . . . . 16  |-  ( (; 1
0  e.  ZZ  /\  j  e.  NN0 )  -> 
(; 1 0 ^ j
)  e.  ZZ )
4610, 44, 45sylancr 414 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN0  /\  j  e.  ( 0 ... ( k  - 
1 ) ) )  ->  (; 1 0 ^ j
)  e.  ZZ )
4742, 46fsumzcl 11879 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  sum_ j  e.  ( 0 ... (
k  -  1 ) ) (; 1 0 ^ j
)  e.  ZZ )
4837, 47eqeltrrd 2287 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) )  e.  ZZ )
49 1z 9440 . . . . . . . . . . . . . . 15  |-  1  e.  ZZ
50 zsubcl 9455 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  ZZ  /\ ; 1 0  e.  ZZ )  -> 
( 1  - ; 1 0 )  e.  ZZ )
5149, 10, 50mp2an 426 . . . . . . . . . . . . . 14  |-  ( 1  - ; 1 0 )  e.  ZZ
5231, 33ltneii 8211 . . . . . . . . . . . . . . 15  |-  1  =/= ; 1 0
5319, 20subeq0i 8394 . . . . . . . . . . . . . . . 16  |-  ( ( 1  - ; 1 0 )  =  0  <->  1  = ; 1 0 )
5453necon3bii 2418 . . . . . . . . . . . . . . 15  |-  ( ( 1  - ; 1 0 )  =/=  0  <->  1  =/= ; 1 0 )
5552, 54mpbir 146 . . . . . . . . . . . . . 14  |-  ( 1  - ; 1 0 )  =/=  0
5610, 36, 13sylancr 414 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  (; 1 0 ^ k
)  e.  ZZ )
57 zsubcl 9455 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  ZZ  /\  (; 1 0 ^ k )  e.  ZZ )  -> 
( 1  -  (; 1 0 ^ k ) )  e.  ZZ )
5849, 56, 57sylancr 414 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  -  (; 1 0 ^ k
) )  e.  ZZ )
59 dvdsval2 12267 . . . . . . . . . . . . . 14  |-  ( ( ( 1  - ; 1 0 )  e.  ZZ  /\  ( 1  - ; 1 0 )  =/=  0  /\  ( 1  -  (; 1 0 ^ k
) )  e.  ZZ )  ->  ( ( 1  - ; 1 0 )  ||  ( 1  -  (; 1 0 ^ k ) )  <-> 
( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) )  e.  ZZ ) )
6051, 55, 58, 59mp3an12i 1356 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  - ; 1 0 )  ||  ( 1  -  (; 1 0 ^ k ) )  <-> 
( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) )  e.  ZZ ) )
6148, 60mpbird 167 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 1  - ; 1 0 )  ||  ( 1  -  (; 1 0 ^ k ) ) )
6256zcnd 9538 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  (; 1 0 ^ k
)  e.  CC )
63 negsubdi2 8373 . . . . . . . . . . . . 13  |-  ( ( (; 1 0 ^ k
)  e.  CC  /\  1  e.  CC )  -> 
-u ( (; 1 0 ^ k
)  -  1 )  =  ( 1  -  (; 1 0 ^ k
) ) )
6462, 19, 63sylancl 413 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  -u (
(; 1 0 ^ k
)  -  1 )  =  ( 1  -  (; 1 0 ^ k
) ) )
6561, 64breqtrrd 4090 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 1  - ; 1 0 )  ||  -u ( (; 1 0 ^ k
)  -  1 ) )
66 peano2zm 9452 . . . . . . . . . . . . 13  |-  ( (; 1
0 ^ k )  e.  ZZ  ->  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )
6756, 66syl 14 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( (; 1
0 ^ k )  -  1 )  e.  ZZ )
68 dvdsnegb 12285 . . . . . . . . . . . 12  |-  ( ( ( 1  - ; 1 0 )  e.  ZZ  /\  ( (; 1
0 ^ k )  -  1 )  e.  ZZ )  ->  (
( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <-> 
( 1  - ; 1 0 )  ||  -u ( (; 1 0 ^ k
)  -  1 ) ) )
6951, 67, 68sylancr 414 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <-> 
( 1  - ; 1 0 )  ||  -u ( (; 1 0 ^ k
)  -  1 ) ) )
7065, 69mpbird 167 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) )
71 negdvdsb 12284 . . . . . . . . . . 11  |-  ( ( ( 1  - ; 1 0 )  e.  ZZ  /\  ( (; 1
0 ^ k )  -  1 )  e.  ZZ )  ->  (
( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <->  -u ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) ) )
7251, 67, 71sylancr 414 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <->  -u ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) ) )
7370, 72mpbid 147 . . . . . . . . 9  |-  ( k  e.  NN0  ->  -u (
1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) )
7429, 73eqbrtrrid 4098 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( 3  x.  3 )  ||  ( (; 1 0 ^ k
)  -  1 ) )
75 muldvds1 12293 . . . . . . . . 9  |-  ( ( 3  e.  ZZ  /\  3  e.  ZZ  /\  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )  -> 
( ( 3  x.  3 )  ||  (
(; 1 0 ^ k
)  -  1 )  ->  3  ||  (
(; 1 0 ^ k
)  -  1 ) ) )
761, 1, 67, 75mp3an12i 1356 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 3  x.  3 ) 
||  ( (; 1 0 ^ k
)  -  1 )  ->  3  ||  (
(; 1 0 ^ k
)  -  1 ) ) )
7774, 76mpd 13 . . . . . . 7  |-  ( k  e.  NN0  ->  3  ||  ( (; 1 0 ^ k
)  -  1 ) )
7812, 77syl 14 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( (; 1 0 ^ k
)  -  1 ) )
7914, 66syl 14 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )
80 dvdsmultr2 12310 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  ( F `  k )  e.  ZZ  /\  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )  -> 
( 3  ||  (
(; 1 0 ^ k
)  -  1 )  ->  3  ||  (
( F `  k
)  x.  ( (; 1
0 ^ k )  -  1 ) ) ) )
811, 8, 79, 80mp3an2i 1357 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
3  ||  ( (; 1 0 ^ k )  - 
1 )  ->  3  ||  ( ( F `  k )  x.  (
(; 1 0 ^ k
)  -  1 ) ) ) )
8278, 81mpd 13 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( F `  k )  x.  (
(; 1 0 ^ k
)  -  1 ) ) )
838zcnd 9538 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( F `  k )  e.  CC )
8414zcnd 9538 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (; 1 0 ^ k )  e.  CC )
8583, 84muls1d 8532 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( (; 1
0 ^ k )  -  1 ) )  =  ( ( ( F `  k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
) )
8682, 85breqtrd 4088 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( ( F `
 k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
) )
876, 2, 18, 86fsumdvds 12319 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  ||  sum_ k  e.  ( 0 ... N
) ( ( ( F `  k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
) )
8815zcnd 9538 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  (; 1 0 ^ k
) )  e.  CC )
896, 88, 83fsumsub 11929 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( ( ( F `
 k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
)  =  ( sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
9087, 89breqtrd 4088 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  ||  ( sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
91 dvdssub2 12312 . 2  |-  ( ( ( 3  e.  ZZ  /\ 
sum_ k  e.  ( 0 ... N ) ( ( F `  k )  x.  (; 1 0 ^ k ) )  e.  ZZ  /\  sum_ k  e.  ( 0 ... N ) ( F `  k )  e.  ZZ )  /\  3  ||  ( sum_ k  e.  ( 0 ... N
) ( ( F `
 k )  x.  (; 1 0 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )  ->  (
3  ||  sum_ k  e.  ( 0 ... N
) ( ( F `
 k )  x.  (; 1 0 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
922, 16, 17, 90, 91syl31anc 1255 1  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180    =/= wne 2380   class class class wbr 4062   -->wf 5290   ` cfv 5294  (class class class)co 5974   CCcc 7965   0cc0 7967   1c1 7968    + caddc 7970    x. cmul 7972    - cmin 8285   -ucneg 8286   # cap 8696    / cdiv 8787   3c3 9130   9c9 9136   NN0cn0 9337   ZZcz 9414  ;cdc 9546   ...cfz 10172   ^cexp 10727   sum_csu 11830    || cdvds 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-dvds 12265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator