ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3dvds Unicode version

Theorem 3dvds 12046
Description: A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 17-Jan-2015.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
3dvds  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
Distinct variable groups:    k, F    k, N

Proof of Theorem 3dvds
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 3z 9372 . . 3  |-  3  e.  ZZ
21a1i 9 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  e.  ZZ )
3 0zd 9355 . . . 4  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  0  e.  ZZ )
4 nn0z 9363 . . . . 5  |-  ( N  e.  NN0  ->  N  e.  ZZ )
54adantr 276 . . . 4  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  N  e.  ZZ )
63, 5fzfigd 10540 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 0 ... N )  e.  Fin )
7 ffvelcdm 5698 . . . . 5  |-  ( ( F : ( 0 ... N ) --> ZZ 
/\  k  e.  ( 0 ... N ) )  ->  ( F `  k )  e.  ZZ )
87adantll 476 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( F `  k )  e.  ZZ )
9 10nn 9489 . . . . . 6  |- ; 1 0  e.  NN
109nnzi 9364 . . . . 5  |- ; 1 0  e.  ZZ
11 elfznn0 10206 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
1211adantl 277 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
13 zexpcl 10663 . . . . 5  |-  ( (; 1
0  e.  ZZ  /\  k  e.  NN0 )  -> 
(; 1 0 ^ k
)  e.  ZZ )
1410, 12, 13sylancr 414 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (; 1 0 ^ k )  e.  ZZ )
158, 14zmulcld 9471 . . 3  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  (; 1 0 ^ k
) )  e.  ZZ )
166, 15fsumzcl 11584 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( ( F `  k )  x.  (; 1 0 ^ k ) )  e.  ZZ )
176, 8fsumzcl 11584 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( F `  k
)  e.  ZZ )
1815, 8zsubcld 9470 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( F `  k )  x.  (; 1 0 ^ k ) )  -  ( F `  k ) )  e.  ZZ )
19 ax-1cn 7989 . . . . . . . . . . . 12  |-  1  e.  CC
209nncni 9017 . . . . . . . . . . . 12  |- ; 1 0  e.  CC
2119, 20negsubdi2i 8329 . . . . . . . . . . 11  |-  -u (
1  - ; 1 0 )  =  (; 1 0  -  1 )
22 9p1e10 9476 . . . . . . . . . . . . 13  |-  ( 9  +  1 )  = ; 1
0
2322eqcomi 2200 . . . . . . . . . . . 12  |- ; 1 0  =  ( 9  +  1 )
2423oveq1i 5935 . . . . . . . . . . 11  |-  (; 1 0  -  1 )  =  ( ( 9  +  1 )  -  1 )
25 9cn 9095 . . . . . . . . . . . 12  |-  9  e.  CC
2625, 19pncan3oi 8259 . . . . . . . . . . 11  |-  ( ( 9  +  1 )  -  1 )  =  9
2721, 24, 263eqtri 2221 . . . . . . . . . 10  |-  -u (
1  - ; 1 0 )  =  9
28 3t3e9 9165 . . . . . . . . . 10  |-  ( 3  x.  3 )  =  9
2927, 28eqtr4i 2220 . . . . . . . . 9  |-  -u (
1  - ; 1 0 )  =  ( 3  x.  3 )
3020a1i 9 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  -> ; 1 0  e.  CC )
31 1re 8042 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
32 10re 9492 . . . . . . . . . . . . . . . . 17  |- ; 1 0  e.  RR
33 1lt10 9612 . . . . . . . . . . . . . . . . 17  |-  1  < ; 1
0
3431, 32, 33gtapii 8678 . . . . . . . . . . . . . . . 16  |- ; 1 0 #  1
3534a1i 9 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  -> ; 1 0 #  1 )
36 id 19 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  k  e. 
NN0 )
3730, 35, 36geoserap 11689 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  sum_ j  e.  ( 0 ... (
k  -  1 ) ) (; 1 0 ^ j
)  =  ( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) ) )
38 0zd 9355 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  0  e.  ZZ )
39 nn0z 9363 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  ZZ )
40 peano2zm 9381 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ZZ  ->  (
k  -  1 )  e.  ZZ )
4139, 40syl 14 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( k  -  1 )  e.  ZZ )
4238, 41fzfigd 10540 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  ( 0 ... ( k  - 
1 ) )  e. 
Fin )
43 elfznn0 10206 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 0 ... ( k  -  1 ) )  ->  j  e.  NN0 )
4443adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN0  /\  j  e.  ( 0 ... ( k  - 
1 ) ) )  ->  j  e.  NN0 )
45 zexpcl 10663 . . . . . . . . . . . . . . . 16  |-  ( (; 1
0  e.  ZZ  /\  j  e.  NN0 )  -> 
(; 1 0 ^ j
)  e.  ZZ )
4610, 44, 45sylancr 414 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN0  /\  j  e.  ( 0 ... ( k  - 
1 ) ) )  ->  (; 1 0 ^ j
)  e.  ZZ )
4742, 46fsumzcl 11584 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  sum_ j  e.  ( 0 ... (
k  -  1 ) ) (; 1 0 ^ j
)  e.  ZZ )
4837, 47eqeltrrd 2274 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) )  e.  ZZ )
49 1z 9369 . . . . . . . . . . . . . . 15  |-  1  e.  ZZ
50 zsubcl 9384 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  ZZ  /\ ; 1 0  e.  ZZ )  -> 
( 1  - ; 1 0 )  e.  ZZ )
5149, 10, 50mp2an 426 . . . . . . . . . . . . . 14  |-  ( 1  - ; 1 0 )  e.  ZZ
5231, 33ltneii 8140 . . . . . . . . . . . . . . 15  |-  1  =/= ; 1 0
5319, 20subeq0i 8323 . . . . . . . . . . . . . . . 16  |-  ( ( 1  - ; 1 0 )  =  0  <->  1  = ; 1 0 )
5453necon3bii 2405 . . . . . . . . . . . . . . 15  |-  ( ( 1  - ; 1 0 )  =/=  0  <->  1  =/= ; 1 0 )
5552, 54mpbir 146 . . . . . . . . . . . . . 14  |-  ( 1  - ; 1 0 )  =/=  0
5610, 36, 13sylancr 414 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  (; 1 0 ^ k
)  e.  ZZ )
57 zsubcl 9384 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  ZZ  /\  (; 1 0 ^ k )  e.  ZZ )  -> 
( 1  -  (; 1 0 ^ k ) )  e.  ZZ )
5849, 56, 57sylancr 414 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  ( 1  -  (; 1 0 ^ k
) )  e.  ZZ )
59 dvdsval2 11972 . . . . . . . . . . . . . 14  |-  ( ( ( 1  - ; 1 0 )  e.  ZZ  /\  ( 1  - ; 1 0 )  =/=  0  /\  ( 1  -  (; 1 0 ^ k
) )  e.  ZZ )  ->  ( ( 1  - ; 1 0 )  ||  ( 1  -  (; 1 0 ^ k ) )  <-> 
( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) )  e.  ZZ ) )
6051, 55, 58, 59mp3an12i 1352 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( ( 1  - ; 1 0 )  ||  ( 1  -  (; 1 0 ^ k ) )  <-> 
( ( 1  -  (; 1 0 ^ k
) )  /  (
1  - ; 1 0 ) )  e.  ZZ ) )
6148, 60mpbird 167 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( 1  - ; 1 0 )  ||  ( 1  -  (; 1 0 ^ k ) ) )
6256zcnd 9466 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  (; 1 0 ^ k
)  e.  CC )
63 negsubdi2 8302 . . . . . . . . . . . . 13  |-  ( ( (; 1 0 ^ k
)  e.  CC  /\  1  e.  CC )  -> 
-u ( (; 1 0 ^ k
)  -  1 )  =  ( 1  -  (; 1 0 ^ k
) ) )
6462, 19, 63sylancl 413 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  -u (
(; 1 0 ^ k
)  -  1 )  =  ( 1  -  (; 1 0 ^ k
) ) )
6561, 64breqtrrd 4062 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( 1  - ; 1 0 )  ||  -u ( (; 1 0 ^ k
)  -  1 ) )
66 peano2zm 9381 . . . . . . . . . . . . 13  |-  ( (; 1
0 ^ k )  e.  ZZ  ->  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )
6756, 66syl 14 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( (; 1
0 ^ k )  -  1 )  e.  ZZ )
68 dvdsnegb 11990 . . . . . . . . . . . 12  |-  ( ( ( 1  - ; 1 0 )  e.  ZZ  /\  ( (; 1
0 ^ k )  -  1 )  e.  ZZ )  ->  (
( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <-> 
( 1  - ; 1 0 )  ||  -u ( (; 1 0 ^ k
)  -  1 ) ) )
6951, 67, 68sylancr 414 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <-> 
( 1  - ; 1 0 )  ||  -u ( (; 1 0 ^ k
)  -  1 ) ) )
7065, 69mpbird 167 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) )
71 negdvdsb 11989 . . . . . . . . . . 11  |-  ( ( ( 1  - ; 1 0 )  e.  ZZ  /\  ( (; 1
0 ^ k )  -  1 )  e.  ZZ )  ->  (
( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <->  -u ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) ) )
7251, 67, 71sylancr 414 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 )  <->  -u ( 1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) ) )
7370, 72mpbid 147 . . . . . . . . 9  |-  ( k  e.  NN0  ->  -u (
1  - ; 1 0 )  ||  ( (; 1 0 ^ k
)  -  1 ) )
7429, 73eqbrtrrid 4070 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( 3  x.  3 )  ||  ( (; 1 0 ^ k
)  -  1 ) )
75 muldvds1 11998 . . . . . . . . 9  |-  ( ( 3  e.  ZZ  /\  3  e.  ZZ  /\  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )  -> 
( ( 3  x.  3 )  ||  (
(; 1 0 ^ k
)  -  1 )  ->  3  ||  (
(; 1 0 ^ k
)  -  1 ) ) )
761, 1, 67, 75mp3an12i 1352 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( 3  x.  3 ) 
||  ( (; 1 0 ^ k
)  -  1 )  ->  3  ||  (
(; 1 0 ^ k
)  -  1 ) ) )
7774, 76mpd 13 . . . . . . 7  |-  ( k  e.  NN0  ->  3  ||  ( (; 1 0 ^ k
)  -  1 ) )
7812, 77syl 14 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( (; 1 0 ^ k
)  -  1 ) )
7914, 66syl 14 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )
80 dvdsmultr2 12015 . . . . . . 7  |-  ( ( 3  e.  ZZ  /\  ( F `  k )  e.  ZZ  /\  (
(; 1 0 ^ k
)  -  1 )  e.  ZZ )  -> 
( 3  ||  (
(; 1 0 ^ k
)  -  1 )  ->  3  ||  (
( F `  k
)  x.  ( (; 1
0 ^ k )  -  1 ) ) ) )
811, 8, 79, 80mp3an2i 1353 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
3  ||  ( (; 1 0 ^ k )  - 
1 )  ->  3  ||  ( ( F `  k )  x.  (
(; 1 0 ^ k
)  -  1 ) ) ) )
8278, 81mpd 13 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( F `  k )  x.  (
(; 1 0 ^ k
)  -  1 ) ) )
838zcnd 9466 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  ( F `  k )  e.  CC )
8414zcnd 9466 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (; 1 0 ^ k )  e.  CC )
8583, 84muls1d 8461 . . . . 5  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  ( (; 1
0 ^ k )  -  1 ) )  =  ( ( ( F `  k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
) )
8682, 85breqtrd 4060 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  3  ||  ( ( ( F `
 k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
) )
876, 2, 18, 86fsumdvds 12024 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  ||  sum_ k  e.  ( 0 ... N
) ( ( ( F `  k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
) )
8815zcnd 9466 . . . 4  |-  ( ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  /\  k  e.  ( 0 ... N
) )  ->  (
( F `  k
)  x.  (; 1 0 ^ k
) )  e.  CC )
896, 88, 83fsumsub 11634 . . 3  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  sum_ k  e.  ( 0 ... N ) ( ( ( F `
 k )  x.  (; 1 0 ^ k
) )  -  ( F `  k )
)  =  ( sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
9087, 89breqtrd 4060 . 2  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  3  ||  ( sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
91 dvdssub2 12017 . 2  |-  ( ( ( 3  e.  ZZ  /\ 
sum_ k  e.  ( 0 ... N ) ( ( F `  k )  x.  (; 1 0 ^ k ) )  e.  ZZ  /\  sum_ k  e.  ( 0 ... N ) ( F `  k )  e.  ZZ )  /\  3  ||  ( sum_ k  e.  ( 0 ... N
) ( ( F `
 k )  x.  (; 1 0 ^ k
) )  -  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )  ->  (
3  ||  sum_ k  e.  ( 0 ... N
) ( ( F `
 k )  x.  (; 1 0 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
922, 16, 17, 90, 91syl31anc 1252 1  |-  ( ( N  e.  NN0  /\  F : ( 0 ... N ) --> ZZ )  ->  ( 3  ||  sum_ k  e.  ( 0 ... N ) ( ( F `  k
)  x.  (; 1 0 ^ k
) )  <->  3  ||  sum_ k  e.  ( 0 ... N ) ( F `  k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4034   -->wf 5255   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    - cmin 8214   -ucneg 8215   # cap 8625    / cdiv 8716   3c3 9059   9c9 9065   NN0cn0 9266   ZZcz 9343  ;cdc 9474   ...cfz 10100   ^cexp 10647   sum_csu 11535    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-dvds 11970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator