ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssdv Unicode version

Theorem abssdv 3267
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
Hypothesis
Ref Expression
abssdv.1  |-  ( ph  ->  ( ps  ->  x  e.  A ) )
Assertion
Ref Expression
abssdv  |-  ( ph  ->  { x  |  ps }  C_  A )
Distinct variable groups:    ph, x    x, A
Allowed substitution hint:    ps( x)

Proof of Theorem abssdv
StepHypRef Expression
1 abssdv.1 . . 3  |-  ( ph  ->  ( ps  ->  x  e.  A ) )
21alrimiv 1897 . 2  |-  ( ph  ->  A. x ( ps 
->  x  e.  A
) )
3 abss 3262 . 2  |-  ( { x  |  ps }  C_  A  <->  A. x ( ps 
->  x  e.  A
) )
42, 3sylibr 134 1  |-  ( ph  ->  { x  |  ps }  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    e. wcel 2176   {cab 2191    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-in 3172  df-ss 3179
This theorem is referenced by:  fmpt  5730  tfrlemibacc  6412  tfrlemibfn  6414  tfr1onlembacc  6428  tfr1onlembfn  6430  tfrcllembacc  6441  tfrcllembfn  6443  eroprf  6715  genipv  7622  hashfacen  10981  4sqlemafi  12718  4sqlemffi  12719  4sqleminfi  12720  4sqlem11  12724  lss1d  14145  lspsn  14178  metrest  14978
  Copyright terms: Public domain W3C validator