| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abssdv | Unicode version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
| Ref | Expression |
|---|---|
| abssdv.1 |
|
| Ref | Expression |
|---|---|
| abssdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssdv.1 |
. . 3
| |
| 2 | 1 | alrimiv 1920 |
. 2
|
| 3 | abss 3293 |
. 2
| |
| 4 | 2, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 |
| This theorem is referenced by: fmpt 5785 tfrlemibacc 6472 tfrlemibfn 6474 tfr1onlembacc 6488 tfr1onlembfn 6490 tfrcllembacc 6501 tfrcllembfn 6503 eroprf 6775 genipv 7696 hashfacen 11058 4sqlemafi 12918 4sqlemffi 12919 4sqleminfi 12920 4sqlem11 12924 lss1d 14347 lspsn 14380 metrest 15180 |
| Copyright terms: Public domain | W3C validator |