| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abssdv | Unicode version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
| Ref | Expression |
|---|---|
| abssdv.1 |
|
| Ref | Expression |
|---|---|
| abssdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssdv.1 |
. . 3
| |
| 2 | 1 | alrimiv 1898 |
. 2
|
| 3 | abss 3270 |
. 2
| |
| 4 | 2, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-in 3180 df-ss 3187 |
| This theorem is referenced by: fmpt 5753 tfrlemibacc 6435 tfrlemibfn 6437 tfr1onlembacc 6451 tfr1onlembfn 6453 tfrcllembacc 6464 tfrcllembfn 6466 eroprf 6738 genipv 7657 hashfacen 11018 4sqlemafi 12833 4sqlemffi 12834 4sqleminfi 12835 4sqlem11 12839 lss1d 14260 lspsn 14293 metrest 15093 |
| Copyright terms: Public domain | W3C validator |