| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abssdv | Unicode version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
| Ref | Expression |
|---|---|
| abssdv.1 |
|
| Ref | Expression |
|---|---|
| abssdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssdv.1 |
. . 3
| |
| 2 | 1 | alrimiv 1897 |
. 2
|
| 3 | abss 3262 |
. 2
| |
| 4 | 2, 3 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-in 3172 df-ss 3179 |
| This theorem is referenced by: fmpt 5730 tfrlemibacc 6412 tfrlemibfn 6414 tfr1onlembacc 6428 tfr1onlembfn 6430 tfrcllembacc 6441 tfrcllembfn 6443 eroprf 6715 genipv 7622 hashfacen 10981 4sqlemafi 12718 4sqlemffi 12719 4sqleminfi 12720 4sqlem11 12724 lss1d 14145 lspsn 14178 metrest 14978 |
| Copyright terms: Public domain | W3C validator |