| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abss | GIF version | ||
| Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.) |
| Ref | Expression |
|---|---|
| abss | ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid2 2327 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 2 | 1 | sseq2i 3221 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ {𝑥 ∣ 𝜑} ⊆ 𝐴) |
| 3 | ss2ab 3262 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) | |
| 4 | 2, 3 | bitr3i 186 | 1 ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 ∈ wcel 2177 {cab 2192 ⊆ wss 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-in 3173 df-ss 3180 |
| This theorem is referenced by: abssdv 3268 rabss 3271 uniiunlem 3283 iunss 3970 reliun 4800 funimaexglem 5362 |
| Copyright terms: Public domain | W3C validator |