![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abss | GIF version |
Description: Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.) |
Ref | Expression |
---|---|
abss | ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid2 2298 | . . 3 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
2 | 1 | sseq2i 3184 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ {𝑥 ∣ 𝜑} ⊆ 𝐴) |
3 | ss2ab 3225 | . 2 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) | |
4 | 2, 3 | bitr3i 186 | 1 ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 ∈ wcel 2148 {cab 2163 ⊆ wss 3131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-in 3137 df-ss 3144 |
This theorem is referenced by: abssdv 3231 rabss 3234 uniiunlem 3246 iunss 3929 reliun 4749 funimaexglem 5301 |
Copyright terms: Public domain | W3C validator |