ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnveq Unicode version

Theorem funcnveq 5383
Description: Another way of expressing that a class is single-rooted. Counterpart to dffun2 5327. (Contributed by Jim Kingdon, 24-Dec-2018.)
Assertion
Ref Expression
funcnveq  |-  ( Fun  `' A  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
Distinct variable group:    x, y, z, A

Proof of Theorem funcnveq
StepHypRef Expression
1 relcnv 5105 . . 3  |-  Rel  `' A
2 dffun2 5327 . . 3  |-  ( Fun  `' A  <->  ( Rel  `' A  /\  A. y A. x A. z ( ( y `' A x  /\  y `' A
z )  ->  x  =  z ) ) )
31, 2mpbiran 946 . 2  |-  ( Fun  `' A  <->  A. y A. x A. z ( ( y `' A x  /\  y `' A z )  ->  x  =  z )
)
4 alcom 1524 . 2  |-  ( A. y A. x A. z
( ( y `' A x  /\  y `' A z )  ->  x  =  z )  <->  A. x A. y A. z ( ( y `' A x  /\  y `' A z )  ->  x  =  z )
)
5 vex 2802 . . . . . . 7  |-  y  e. 
_V
6 vex 2802 . . . . . . 7  |-  x  e. 
_V
75, 6brcnv 4904 . . . . . 6  |-  ( y `' A x  <->  x A
y )
8 vex 2802 . . . . . . 7  |-  z  e. 
_V
95, 8brcnv 4904 . . . . . 6  |-  ( y `' A z  <->  z A
y )
107, 9anbi12i 460 . . . . 5  |-  ( ( y `' A x  /\  y `' A
z )  <->  ( x A y  /\  z A y ) )
1110imbi1i 238 . . . 4  |-  ( ( ( y `' A x  /\  y `' A
z )  ->  x  =  z )  <->  ( (
x A y  /\  z A y )  ->  x  =  z )
)
12112albii 1517 . . 3  |-  ( A. y A. z ( ( y `' A x  /\  y `' A
z )  ->  x  =  z )  <->  A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
1312albii 1516 . 2  |-  ( A. x A. y A. z
( ( y `' A x  /\  y `' A z )  ->  x  =  z )  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
143, 4, 133bitri 206 1  |-  ( Fun  `' A  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393   class class class wbr 4082   `'ccnv 4717   Rel wrel 4723   Fun wfun 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-fun 5319
This theorem is referenced by:  imain  5402
  Copyright terms: Public domain W3C validator