ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnveq Unicode version

Theorem funcnveq 5077
Description: Another way of expressing that a class is single-rooted. Counterpart to dffun2 5025. (Contributed by Jim Kingdon, 24-Dec-2018.)
Assertion
Ref Expression
funcnveq  |-  ( Fun  `' A  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
Distinct variable group:    x, y, z, A

Proof of Theorem funcnveq
StepHypRef Expression
1 relcnv 4810 . . 3  |-  Rel  `' A
2 dffun2 5025 . . 3  |-  ( Fun  `' A  <->  ( Rel  `' A  /\  A. y A. x A. z ( ( y `' A x  /\  y `' A
z )  ->  x  =  z ) ) )
31, 2mpbiran 886 . 2  |-  ( Fun  `' A  <->  A. y A. x A. z ( ( y `' A x  /\  y `' A z )  ->  x  =  z )
)
4 alcom 1412 . 2  |-  ( A. y A. x A. z
( ( y `' A x  /\  y `' A z )  ->  x  =  z )  <->  A. x A. y A. z ( ( y `' A x  /\  y `' A z )  ->  x  =  z )
)
5 vex 2622 . . . . . . 7  |-  y  e. 
_V
6 vex 2622 . . . . . . 7  |-  x  e. 
_V
75, 6brcnv 4619 . . . . . 6  |-  ( y `' A x  <->  x A
y )
8 vex 2622 . . . . . . 7  |-  z  e. 
_V
95, 8brcnv 4619 . . . . . 6  |-  ( y `' A z  <->  z A
y )
107, 9anbi12i 448 . . . . 5  |-  ( ( y `' A x  /\  y `' A
z )  <->  ( x A y  /\  z A y ) )
1110imbi1i 236 . . . 4  |-  ( ( ( y `' A x  /\  y `' A
z )  ->  x  =  z )  <->  ( (
x A y  /\  z A y )  ->  x  =  z )
)
12112albii 1405 . . 3  |-  ( A. y A. z ( ( y `' A x  /\  y `' A
z )  ->  x  =  z )  <->  A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
1312albii 1404 . 2  |-  ( A. x A. y A. z
( ( y `' A x  /\  y `' A z )  ->  x  =  z )  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
143, 4, 133bitri 204 1  |-  ( Fun  `' A  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1287   class class class wbr 3845   `'ccnv 4437   Rel wrel 4443   Fun wfun 5009
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-fun 5017
This theorem is referenced by:  imain  5096
  Copyright terms: Public domain W3C validator