ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnveq Unicode version

Theorem funcnveq 5033
Description: Another way of expressing that a class is single-rooted. Counterpart to dffun2 4982. (Contributed by Jim Kingdon, 24-Dec-2018.)
Assertion
Ref Expression
funcnveq  |-  ( Fun  `' A  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
Distinct variable group:    x, y, z, A

Proof of Theorem funcnveq
StepHypRef Expression
1 relcnv 4768 . . 3  |-  Rel  `' A
2 dffun2 4982 . . 3  |-  ( Fun  `' A  <->  ( Rel  `' A  /\  A. y A. x A. z ( ( y `' A x  /\  y `' A
z )  ->  x  =  z ) ) )
31, 2mpbiran 884 . 2  |-  ( Fun  `' A  <->  A. y A. x A. z ( ( y `' A x  /\  y `' A z )  ->  x  =  z )
)
4 alcom 1410 . 2  |-  ( A. y A. x A. z
( ( y `' A x  /\  y `' A z )  ->  x  =  z )  <->  A. x A. y A. z ( ( y `' A x  /\  y `' A z )  ->  x  =  z )
)
5 vex 2617 . . . . . . 7  |-  y  e. 
_V
6 vex 2617 . . . . . . 7  |-  x  e. 
_V
75, 6brcnv 4580 . . . . . 6  |-  ( y `' A x  <->  x A
y )
8 vex 2617 . . . . . . 7  |-  z  e. 
_V
95, 8brcnv 4580 . . . . . 6  |-  ( y `' A z  <->  z A
y )
107, 9anbi12i 448 . . . . 5  |-  ( ( y `' A x  /\  y `' A
z )  <->  ( x A y  /\  z A y ) )
1110imbi1i 236 . . . 4  |-  ( ( ( y `' A x  /\  y `' A
z )  ->  x  =  z )  <->  ( (
x A y  /\  z A y )  ->  x  =  z )
)
12112albii 1403 . . 3  |-  ( A. y A. z ( ( y `' A x  /\  y `' A
z )  ->  x  =  z )  <->  A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
1312albii 1402 . 2  |-  ( A. x A. y A. z
( ( y `' A x  /\  y `' A z )  ->  x  =  z )  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
143, 4, 133bitri 204 1  |-  ( Fun  `' A  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1285   class class class wbr 3814   `'ccnv 4403   Rel wrel 4409   Fun wfun 4966
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2616  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-br 3815  df-opab 3869  df-id 4087  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-fun 4974
This theorem is referenced by:  imain  5052
  Copyright terms: Public domain W3C validator