ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnveq Unicode version

Theorem funcnveq 5336
Description: Another way of expressing that a class is single-rooted. Counterpart to dffun2 5280. (Contributed by Jim Kingdon, 24-Dec-2018.)
Assertion
Ref Expression
funcnveq  |-  ( Fun  `' A  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
Distinct variable group:    x, y, z, A

Proof of Theorem funcnveq
StepHypRef Expression
1 relcnv 5059 . . 3  |-  Rel  `' A
2 dffun2 5280 . . 3  |-  ( Fun  `' A  <->  ( Rel  `' A  /\  A. y A. x A. z ( ( y `' A x  /\  y `' A
z )  ->  x  =  z ) ) )
31, 2mpbiran 942 . 2  |-  ( Fun  `' A  <->  A. y A. x A. z ( ( y `' A x  /\  y `' A z )  ->  x  =  z )
)
4 alcom 1500 . 2  |-  ( A. y A. x A. z
( ( y `' A x  /\  y `' A z )  ->  x  =  z )  <->  A. x A. y A. z ( ( y `' A x  /\  y `' A z )  ->  x  =  z )
)
5 vex 2774 . . . . . . 7  |-  y  e. 
_V
6 vex 2774 . . . . . . 7  |-  x  e. 
_V
75, 6brcnv 4860 . . . . . 6  |-  ( y `' A x  <->  x A
y )
8 vex 2774 . . . . . . 7  |-  z  e. 
_V
95, 8brcnv 4860 . . . . . 6  |-  ( y `' A z  <->  z A
y )
107, 9anbi12i 460 . . . . 5  |-  ( ( y `' A x  /\  y `' A
z )  <->  ( x A y  /\  z A y ) )
1110imbi1i 238 . . . 4  |-  ( ( ( y `' A x  /\  y `' A
z )  ->  x  =  z )  <->  ( (
x A y  /\  z A y )  ->  x  =  z )
)
12112albii 1493 . . 3  |-  ( A. y A. z ( ( y `' A x  /\  y `' A
z )  ->  x  =  z )  <->  A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
1312albii 1492 . 2  |-  ( A. x A. y A. z
( ( y `' A x  /\  y `' A z )  ->  x  =  z )  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
143, 4, 133bitri 206 1  |-  ( Fun  `' A  <->  A. x A. y A. z ( ( x A y  /\  z A y )  ->  x  =  z )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1370   class class class wbr 4043   `'ccnv 4673   Rel wrel 4679   Fun wfun 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-fun 5272
This theorem is referenced by:  imain  5355
  Copyright terms: Public domain W3C validator