ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcxmaslem1 Unicode version

Theorem bcxmaslem1 10945
Description: Lemma for bcxmas 10946. (Contributed by Paul Chapman, 18-May-2007.)
Assertion
Ref Expression
bcxmaslem1  |-  ( A  =  B  ->  (
( N  +  A
)  _C  A )  =  ( ( N  +  B )  _C  B ) )

Proof of Theorem bcxmaslem1
StepHypRef Expression
1 oveq2 5676 . 2  |-  ( A  =  B  ->  ( N  +  A )  =  ( N  +  B ) )
2 id 19 . 2  |-  ( A  =  B  ->  A  =  B )
31, 2oveq12d 5686 1  |-  ( A  =  B  ->  (
( N  +  A
)  _C  A )  =  ( ( N  +  B )  _C  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290  (class class class)co 5668    + caddc 7416    _C cbc 10218
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-v 2624  df-un 3006  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-br 3854  df-iota 4995  df-fv 5038  df-ov 5671
This theorem is referenced by:  bcxmas  10946
  Copyright terms: Public domain W3C validator