ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcxmaslem1 Unicode version

Theorem bcxmaslem1 11496
Description: Lemma for bcxmas 11497. (Contributed by Paul Chapman, 18-May-2007.)
Assertion
Ref Expression
bcxmaslem1  |-  ( A  =  B  ->  (
( N  +  A
)  _C  A )  =  ( ( N  +  B )  _C  B ) )

Proof of Theorem bcxmaslem1
StepHypRef Expression
1 oveq2 5883 . 2  |-  ( A  =  B  ->  ( N  +  A )  =  ( N  +  B ) )
2 id 19 . 2  |-  ( A  =  B  ->  A  =  B )
31, 2oveq12d 5893 1  |-  ( A  =  B  ->  (
( N  +  A
)  _C  A )  =  ( ( N  +  B )  _C  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353  (class class class)co 5875    + caddc 7814    _C cbc 10727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-iota 5179  df-fv 5225  df-ov 5878
This theorem is referenced by:  bcxmas  11497
  Copyright terms: Public domain W3C validator