ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcxmaslem1 Unicode version

Theorem bcxmaslem1 11999
Description: Lemma for bcxmas 12000. (Contributed by Paul Chapman, 18-May-2007.)
Assertion
Ref Expression
bcxmaslem1  |-  ( A  =  B  ->  (
( N  +  A
)  _C  A )  =  ( ( N  +  B )  _C  B ) )

Proof of Theorem bcxmaslem1
StepHypRef Expression
1 oveq2 6009 . 2  |-  ( A  =  B  ->  ( N  +  A )  =  ( N  +  B ) )
2 id 19 . 2  |-  ( A  =  B  ->  A  =  B )
31, 2oveq12d 6019 1  |-  ( A  =  B  ->  (
( N  +  A
)  _C  A )  =  ( ( N  +  B )  _C  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395  (class class class)co 6001    + caddc 8002    _C cbc 10969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004
This theorem is referenced by:  bcxmas  12000
  Copyright terms: Public domain W3C validator