ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcxmas Unicode version

Theorem bcxmas 11833
Description: Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
bcxmas  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ( N  +  1 )  +  M )  _C  M
)  =  sum_ j  e.  ( 0 ... M
) ( ( N  +  j )  _C  j ) )
Distinct variable groups:    j, M    j, N

Proof of Theorem bcxmas
Dummy variables  m  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcxmaslem1 11832 . . . . 5  |-  ( m  =  0  ->  (
( ( N  + 
1 )  +  m
)  _C  m )  =  ( ( ( N  +  1 )  +  0 )  _C  0 ) )
2 oveq2 5954 . . . . . 6  |-  ( m  =  0  ->  (
0 ... m )  =  ( 0 ... 0
) )
32sumeq1d 11710 . . . . 5  |-  ( m  =  0  ->  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  =  sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j ) )
41, 3eqeq12d 2220 . . . 4  |-  ( m  =  0  ->  (
( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  <->  ( (
( N  +  1 )  +  0 )  _C  0 )  = 
sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j
) ) )
54imbi2d 230 . . 3  |-  ( m  =  0  ->  (
( N  e.  NN0  ->  ( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j ) )  <->  ( N  e.  NN0  ->  ( (
( N  +  1 )  +  0 )  _C  0 )  = 
sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j
) ) ) )
6 bcxmaslem1 11832 . . . . 5  |-  ( m  =  k  ->  (
( ( N  + 
1 )  +  m
)  _C  m )  =  ( ( ( N  +  1 )  +  k )  _C  k ) )
7 oveq2 5954 . . . . . 6  |-  ( m  =  k  ->  (
0 ... m )  =  ( 0 ... k
) )
87sumeq1d 11710 . . . . 5  |-  ( m  =  k  ->  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j ) )
96, 8eqeq12d 2220 . . . 4  |-  ( m  =  k  ->  (
( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  <->  ( (
( N  +  1 )  +  k )  _C  k )  = 
sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
) ) )
109imbi2d 230 . . 3  |-  ( m  =  k  ->  (
( N  e.  NN0  ->  ( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j ) )  <->  ( N  e.  NN0  ->  ( (
( N  +  1 )  +  k )  _C  k )  = 
sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
) ) ) )
11 bcxmaslem1 11832 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  (
( ( N  + 
1 )  +  m
)  _C  m )  =  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
12 oveq2 5954 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  (
0 ... m )  =  ( 0 ... (
k  +  1 ) ) )
1312sumeq1d 11710 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  =  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j ) )
1411, 13eqeq12d 2220 . . . 4  |-  ( m  =  ( k  +  1 )  ->  (
( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  <->  ( (
( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  = 
sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j
) ) )
1514imbi2d 230 . . 3  |-  ( m  =  ( k  +  1 )  ->  (
( N  e.  NN0  ->  ( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j ) )  <->  ( N  e.  NN0  ->  ( (
( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  = 
sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j
) ) ) )
16 bcxmaslem1 11832 . . . . 5  |-  ( m  =  M  ->  (
( ( N  + 
1 )  +  m
)  _C  m )  =  ( ( ( N  +  1 )  +  M )  _C  M ) )
17 oveq2 5954 . . . . . 6  |-  ( m  =  M  ->  (
0 ... m )  =  ( 0 ... M
) )
1817sumeq1d 11710 . . . . 5  |-  ( m  =  M  ->  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  =  sum_ j  e.  ( 0 ... M ) ( ( N  +  j )  _C  j ) )
1916, 18eqeq12d 2220 . . . 4  |-  ( m  =  M  ->  (
( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  <->  ( (
( N  +  1 )  +  M )  _C  M )  = 
sum_ j  e.  ( 0 ... M ) ( ( N  +  j )  _C  j
) ) )
2019imbi2d 230 . . 3  |-  ( m  =  M  ->  (
( N  e.  NN0  ->  ( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j ) )  <->  ( N  e.  NN0  ->  ( (
( N  +  1 )  +  M )  _C  M )  = 
sum_ j  e.  ( 0 ... M ) ( ( N  +  j )  _C  j
) ) ) )
21 0nn0 9312 . . . . 5  |-  0  e.  NN0
22 nn0addcl 9332 . . . . . 6  |-  ( ( N  e.  NN0  /\  0  e.  NN0 )  -> 
( N  +  0 )  e.  NN0 )
23 bcn0 10902 . . . . . 6  |-  ( ( N  +  0 )  e.  NN0  ->  ( ( N  +  0 )  _C  0 )  =  1 )
2422, 23syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  0  e.  NN0 )  -> 
( ( N  + 
0 )  _C  0
)  =  1 )
2521, 24mpan2 425 . . . 4  |-  ( N  e.  NN0  ->  ( ( N  +  0 )  _C  0 )  =  1 )
26 0z 9385 . . . . 5  |-  0  e.  ZZ
27 1nn0 9313 . . . . . . 7  |-  1  e.  NN0
2825, 27eqeltrdi 2296 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  +  0 )  _C  0 )  e. 
NN0 )
2928nn0cnd 9352 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  +  0 )  _C  0 )  e.  CC )
30 bcxmaslem1 11832 . . . . . 6  |-  ( j  =  0  ->  (
( N  +  j )  _C  j )  =  ( ( N  +  0 )  _C  0 ) )
3130fsum1 11756 . . . . 5  |-  ( ( 0  e.  ZZ  /\  ( ( N  + 
0 )  _C  0
)  e.  CC )  ->  sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j
)  =  ( ( N  +  0 )  _C  0 ) )
3226, 29, 31sylancr 414 . . . 4  |-  ( N  e.  NN0  ->  sum_ j  e.  ( 0 ... 0
) ( ( N  +  j )  _C  j )  =  ( ( N  +  0 )  _C  0 ) )
33 peano2nn0 9337 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
34 nn0addcl 9332 . . . . . 6  |-  ( ( ( N  +  1 )  e.  NN0  /\  0  e.  NN0 )  -> 
( ( N  + 
1 )  +  0 )  e.  NN0 )
3533, 21, 34sylancl 413 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  +  0 )  e. 
NN0 )
36 bcn0 10902 . . . . 5  |-  ( ( ( N  +  1 )  +  0 )  e.  NN0  ->  ( ( ( N  +  1 )  +  0 )  _C  0 )  =  1 )
3735, 36syl 14 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  +  0 )  _C  0 )  =  1 )
3825, 32, 373eqtr4rd 2249 . . 3  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  +  0 )  _C  0 )  = 
sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j
) )
39 simpr 110 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  NN0 )
40 elnn0uz 9688 . . . . . . . . . . 11  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
4139, 40sylib 122 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  ( ZZ>= ` 
0 ) )
42 simpl 109 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  N  e.  NN0 )
43 elfznn0 10238 . . . . . . . . . . . . 13  |-  ( j  e.  ( 0 ... ( k  +  1 ) )  ->  j  e.  NN0 )
44 nn0addcl 9332 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  j  e.  NN0 )  -> 
( N  +  j )  e.  NN0 )
4542, 43, 44syl2an 289 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  j  e.  (
0 ... ( k  +  1 ) ) )  ->  ( N  +  j )  e.  NN0 )
46 elfzelz 10149 . . . . . . . . . . . . 13  |-  ( j  e.  ( 0 ... ( k  +  1 ) )  ->  j  e.  ZZ )
4746adantl 277 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  j  e.  (
0 ... ( k  +  1 ) ) )  ->  j  e.  ZZ )
48 bccl 10914 . . . . . . . . . . . 12  |-  ( ( ( N  +  j )  e.  NN0  /\  j  e.  ZZ )  ->  ( ( N  +  j )  _C  j
)  e.  NN0 )
4945, 47, 48syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  j  e.  (
0 ... ( k  +  1 ) ) )  ->  ( ( N  +  j )  _C  j )  e.  NN0 )
5049nn0cnd 9352 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  j  e.  (
0 ... ( k  +  1 ) ) )  ->  ( ( N  +  j )  _C  j )  e.  CC )
51 bcxmaslem1 11832 . . . . . . . . . 10  |-  ( j  =  ( k  +  1 )  ->  (
( N  +  j )  _C  j )  =  ( ( N  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
5241, 50, 51fsump1 11764 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j )  =  ( sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j )  +  ( ( N  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) ) )
53 nn0cn 9307 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  N  e.  CC )
5453adantr 276 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  N  e.  CC )
55 nn0cn 9307 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  CC )
5655adantl 277 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  CC )
57 1cnd 8090 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
1  e.  CC )
58 add32r 8234 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  ( N  +  ( k  +  1 ) )  =  ( ( N  +  1 )  +  k ) )
5954, 56, 57, 58syl3anc 1250 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  ( k  +  1 ) )  =  ( ( N  +  1 )  +  k ) )
6059oveq1d 5961 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  +  ( k  +  1 ) )  _C  (
k  +  1 ) )  =  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) )
6160oveq2d 5962 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
)  +  ( ( N  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )  =  ( sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) ) )
6252, 61eqtrd 2238 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j )  =  ( sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) ) )
6362adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ( N  +  1 )  +  k )  _C  k
)  =  sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j ) )  ->  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j )  =  ( sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) ) )
64 oveq1 5953 . . . . . . . 8  |-  ( ( ( ( N  + 
1 )  +  k )  _C  k )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
)  ->  ( (
( ( N  + 
1 )  +  k )  _C  k )  +  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) )  =  ( sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
)  +  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) ) )
6564adantl 277 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ( N  +  1 )  +  k )  _C  k
)  =  sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j ) )  -> 
( ( ( ( N  +  1 )  +  k )  _C  k )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) )  =  ( sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j )  +  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) ) )
66 ax-1cn 8020 . . . . . . . . . . . . 13  |-  1  e.  CC
67 pncan 8280 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  +  1 )  -  1 )  =  k )
6856, 66, 67sylancl 413 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( k  +  1 )  -  1 )  =  k )
6968oveq2d 5962 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  (
( k  +  1 )  -  1 ) )  =  ( ( ( N  +  1 )  +  k )  _C  k ) )
7069oveq2d 5962 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  + 
1 )  +  k )  _C  ( ( k  +  1 )  -  1 ) ) )  =  ( ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  +  1 )  +  k )  _C  k ) ) )
71 nn0addcl 9332 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN0 )
7233, 71sylan 283 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN0 )
73 nn0p1nn 9336 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
7473adantl 277 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  NN )
7574nnzd 9496 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  ZZ )
76 bcpasc 10913 . . . . . . . . . . 11  |-  ( ( ( ( N  + 
1 )  +  k )  e.  NN0  /\  ( k  +  1 )  e.  ZZ )  ->  ( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  +  1 )  +  k )  _C  (
( k  +  1 )  -  1 ) ) )  =  ( ( ( ( N  +  1 )  +  k )  +  1 )  _C  ( k  +  1 ) ) )
7772, 75, 76syl2anc 411 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  + 
1 )  +  k )  _C  ( ( k  +  1 )  -  1 ) ) )  =  ( ( ( ( N  + 
1 )  +  k )  +  1 )  _C  ( k  +  1 ) ) )
7870, 77eqtr3d 2240 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  + 
1 )  +  k )  _C  k ) )  =  ( ( ( ( N  + 
1 )  +  k )  +  1 )  _C  ( k  +  1 ) ) )
79 nn0p1nn 9336 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
80 nnnn0addcl 9327 . . . . . . . . . . . . . 14  |-  ( ( ( N  +  1 )  e.  NN  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN )
8179, 80sylan 283 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN )
8281nnnn0d 9350 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN0 )
83 bccl 10914 . . . . . . . . . . . 12  |-  ( ( ( ( N  + 
1 )  +  k )  e.  NN0  /\  ( k  +  1 )  e.  ZZ )  ->  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  e.  NN0 )
8482, 75, 83syl2anc 411 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  (
k  +  1 ) )  e.  NN0 )
8584nn0cnd 9352 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  (
k  +  1 ) )  e.  CC )
86 nn0z 9394 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  k  e.  ZZ )
8786adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  ZZ )
88 bccl 10914 . . . . . . . . . . . . 13  |-  ( ( ( ( N  + 
1 )  +  k )  e.  NN0  /\  k  e.  ZZ )  ->  ( ( ( N  +  1 )  +  k )  _C  k
)  e.  NN0 )
8971, 87, 88syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  k
)  e.  NN0 )
9033, 89sylan 283 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  k
)  e.  NN0 )
9190nn0cnd 9352 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  k
)  e.  CC )
9285, 91addcomd 8225 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  + 
1 )  +  k )  _C  k ) )  =  ( ( ( ( N  + 
1 )  +  k )  _C  k )  +  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) ) )
93 peano2cn 8209 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
9453, 93syl 14 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  CC )
9594adantr 276 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  e.  CC )
9695, 56, 57addassd 8097 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  +  1 )  =  ( ( N  +  1 )  +  ( k  +  1 ) ) )
9796oveq1d 5961 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  +  1 )  _C  (
k  +  1 ) )  =  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
9878, 92, 973eqtr3d 2246 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  k )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) )  =  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
9998adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ( N  +  1 )  +  k )  _C  k
)  =  sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j ) )  -> 
( ( ( ( N  +  1 )  +  k )  _C  k )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) )  =  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
10063, 65, 993eqtr2rd 2245 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ( N  +  1 )  +  k )  _C  k
)  =  sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j ) )  -> 
( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  (
k  +  1 ) )  =  sum_ j  e.  ( 0 ... (
k  +  1 ) ) ( ( N  +  j )  _C  j ) )
101100ex 115 . . . . 5  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  k )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j )  ->  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  =  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j ) ) )
102101expcom 116 . . . 4  |-  ( k  e.  NN0  ->  ( N  e.  NN0  ->  ( ( ( ( N  + 
1 )  +  k )  _C  k )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
)  ->  ( (
( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  = 
sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j
) ) ) )
103102a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( N  e.  NN0  ->  ( ( ( N  + 
1 )  +  k )  _C  k )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
) )  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  =  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j
) ) ) )
1045, 10, 15, 20, 38, 103nn0ind 9489 . 2  |-  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( ( ( N  +  1 )  +  M )  _C  M )  = 
sum_ j  e.  ( 0 ... M ) ( ( N  +  j )  _C  j
) ) )
105104impcom 125 1  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ( N  +  1 )  +  M )  _C  M
)  =  sum_ j  e.  ( 0 ... M
) ( ( N  +  j )  _C  j ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   ` cfv 5272  (class class class)co 5946   CCcc 7925   0cc0 7927   1c1 7928    + caddc 7930    - cmin 8245   NNcn 9038   NN0cn0 9297   ZZcz 9374   ZZ>=cuz 9650   ...cfz 10132    _C cbc 10894   sum_csu 11697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-fac 10873  df-bc 10895  df-ihash 10923  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-sumdc 11698
This theorem is referenced by:  arisum  11842
  Copyright terms: Public domain W3C validator