ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcxmas Unicode version

Theorem bcxmas 11290
Description: Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
bcxmas  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ( N  +  1 )  +  M )  _C  M
)  =  sum_ j  e.  ( 0 ... M
) ( ( N  +  j )  _C  j ) )
Distinct variable groups:    j, M    j, N

Proof of Theorem bcxmas
Dummy variables  m  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcxmaslem1 11289 . . . . 5  |-  ( m  =  0  ->  (
( ( N  + 
1 )  +  m
)  _C  m )  =  ( ( ( N  +  1 )  +  0 )  _C  0 ) )
2 oveq2 5790 . . . . . 6  |-  ( m  =  0  ->  (
0 ... m )  =  ( 0 ... 0
) )
32sumeq1d 11167 . . . . 5  |-  ( m  =  0  ->  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  =  sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j ) )
41, 3eqeq12d 2155 . . . 4  |-  ( m  =  0  ->  (
( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  <->  ( (
( N  +  1 )  +  0 )  _C  0 )  = 
sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j
) ) )
54imbi2d 229 . . 3  |-  ( m  =  0  ->  (
( N  e.  NN0  ->  ( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j ) )  <->  ( N  e.  NN0  ->  ( (
( N  +  1 )  +  0 )  _C  0 )  = 
sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j
) ) ) )
6 bcxmaslem1 11289 . . . . 5  |-  ( m  =  k  ->  (
( ( N  + 
1 )  +  m
)  _C  m )  =  ( ( ( N  +  1 )  +  k )  _C  k ) )
7 oveq2 5790 . . . . . 6  |-  ( m  =  k  ->  (
0 ... m )  =  ( 0 ... k
) )
87sumeq1d 11167 . . . . 5  |-  ( m  =  k  ->  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j ) )
96, 8eqeq12d 2155 . . . 4  |-  ( m  =  k  ->  (
( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  <->  ( (
( N  +  1 )  +  k )  _C  k )  = 
sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
) ) )
109imbi2d 229 . . 3  |-  ( m  =  k  ->  (
( N  e.  NN0  ->  ( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j ) )  <->  ( N  e.  NN0  ->  ( (
( N  +  1 )  +  k )  _C  k )  = 
sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
) ) ) )
11 bcxmaslem1 11289 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  (
( ( N  + 
1 )  +  m
)  _C  m )  =  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
12 oveq2 5790 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  (
0 ... m )  =  ( 0 ... (
k  +  1 ) ) )
1312sumeq1d 11167 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  =  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j ) )
1411, 13eqeq12d 2155 . . . 4  |-  ( m  =  ( k  +  1 )  ->  (
( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  <->  ( (
( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  = 
sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j
) ) )
1514imbi2d 229 . . 3  |-  ( m  =  ( k  +  1 )  ->  (
( N  e.  NN0  ->  ( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j ) )  <->  ( N  e.  NN0  ->  ( (
( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  = 
sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j
) ) ) )
16 bcxmaslem1 11289 . . . . 5  |-  ( m  =  M  ->  (
( ( N  + 
1 )  +  m
)  _C  m )  =  ( ( ( N  +  1 )  +  M )  _C  M ) )
17 oveq2 5790 . . . . . 6  |-  ( m  =  M  ->  (
0 ... m )  =  ( 0 ... M
) )
1817sumeq1d 11167 . . . . 5  |-  ( m  =  M  ->  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  =  sum_ j  e.  ( 0 ... M ) ( ( N  +  j )  _C  j ) )
1916, 18eqeq12d 2155 . . . 4  |-  ( m  =  M  ->  (
( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  <->  ( (
( N  +  1 )  +  M )  _C  M )  = 
sum_ j  e.  ( 0 ... M ) ( ( N  +  j )  _C  j
) ) )
2019imbi2d 229 . . 3  |-  ( m  =  M  ->  (
( N  e.  NN0  ->  ( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j ) )  <->  ( N  e.  NN0  ->  ( (
( N  +  1 )  +  M )  _C  M )  = 
sum_ j  e.  ( 0 ... M ) ( ( N  +  j )  _C  j
) ) ) )
21 0nn0 9016 . . . . 5  |-  0  e.  NN0
22 nn0addcl 9036 . . . . . 6  |-  ( ( N  e.  NN0  /\  0  e.  NN0 )  -> 
( N  +  0 )  e.  NN0 )
23 bcn0 10533 . . . . . 6  |-  ( ( N  +  0 )  e.  NN0  ->  ( ( N  +  0 )  _C  0 )  =  1 )
2422, 23syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  0  e.  NN0 )  -> 
( ( N  + 
0 )  _C  0
)  =  1 )
2521, 24mpan2 422 . . . 4  |-  ( N  e.  NN0  ->  ( ( N  +  0 )  _C  0 )  =  1 )
26 0z 9089 . . . . 5  |-  0  e.  ZZ
27 1nn0 9017 . . . . . . 7  |-  1  e.  NN0
2825, 27eqeltrdi 2231 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  +  0 )  _C  0 )  e. 
NN0 )
2928nn0cnd 9056 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  +  0 )  _C  0 )  e.  CC )
30 bcxmaslem1 11289 . . . . . 6  |-  ( j  =  0  ->  (
( N  +  j )  _C  j )  =  ( ( N  +  0 )  _C  0 ) )
3130fsum1 11213 . . . . 5  |-  ( ( 0  e.  ZZ  /\  ( ( N  + 
0 )  _C  0
)  e.  CC )  ->  sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j
)  =  ( ( N  +  0 )  _C  0 ) )
3226, 29, 31sylancr 411 . . . 4  |-  ( N  e.  NN0  ->  sum_ j  e.  ( 0 ... 0
) ( ( N  +  j )  _C  j )  =  ( ( N  +  0 )  _C  0 ) )
33 peano2nn0 9041 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
34 nn0addcl 9036 . . . . . 6  |-  ( ( ( N  +  1 )  e.  NN0  /\  0  e.  NN0 )  -> 
( ( N  + 
1 )  +  0 )  e.  NN0 )
3533, 21, 34sylancl 410 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  +  0 )  e. 
NN0 )
36 bcn0 10533 . . . . 5  |-  ( ( ( N  +  1 )  +  0 )  e.  NN0  ->  ( ( ( N  +  1 )  +  0 )  _C  0 )  =  1 )
3735, 36syl 14 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  +  0 )  _C  0 )  =  1 )
3825, 32, 373eqtr4rd 2184 . . 3  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  +  0 )  _C  0 )  = 
sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j
) )
39 simpr 109 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  NN0 )
40 elnn0uz 9387 . . . . . . . . . . 11  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
4139, 40sylib 121 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  ( ZZ>= ` 
0 ) )
42 simpl 108 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  N  e.  NN0 )
43 elfznn0 9925 . . . . . . . . . . . . 13  |-  ( j  e.  ( 0 ... ( k  +  1 ) )  ->  j  e.  NN0 )
44 nn0addcl 9036 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  j  e.  NN0 )  -> 
( N  +  j )  e.  NN0 )
4542, 43, 44syl2an 287 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  j  e.  (
0 ... ( k  +  1 ) ) )  ->  ( N  +  j )  e.  NN0 )
46 elfzelz 9837 . . . . . . . . . . . . 13  |-  ( j  e.  ( 0 ... ( k  +  1 ) )  ->  j  e.  ZZ )
4746adantl 275 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  j  e.  (
0 ... ( k  +  1 ) ) )  ->  j  e.  ZZ )
48 bccl 10545 . . . . . . . . . . . 12  |-  ( ( ( N  +  j )  e.  NN0  /\  j  e.  ZZ )  ->  ( ( N  +  j )  _C  j
)  e.  NN0 )
4945, 47, 48syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  j  e.  (
0 ... ( k  +  1 ) ) )  ->  ( ( N  +  j )  _C  j )  e.  NN0 )
5049nn0cnd 9056 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  j  e.  (
0 ... ( k  +  1 ) ) )  ->  ( ( N  +  j )  _C  j )  e.  CC )
51 bcxmaslem1 11289 . . . . . . . . . 10  |-  ( j  =  ( k  +  1 )  ->  (
( N  +  j )  _C  j )  =  ( ( N  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
5241, 50, 51fsump1 11221 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j )  =  ( sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j )  +  ( ( N  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) ) )
53 nn0cn 9011 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  N  e.  CC )
5453adantr 274 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  N  e.  CC )
55 nn0cn 9011 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  CC )
5655adantl 275 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  CC )
57 1cnd 7806 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
1  e.  CC )
58 add32r 7946 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  ( N  +  ( k  +  1 ) )  =  ( ( N  +  1 )  +  k ) )
5954, 56, 57, 58syl3anc 1217 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  ( k  +  1 ) )  =  ( ( N  +  1 )  +  k ) )
6059oveq1d 5797 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  +  ( k  +  1 ) )  _C  (
k  +  1 ) )  =  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) )
6160oveq2d 5798 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
)  +  ( ( N  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )  =  ( sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) ) )
6252, 61eqtrd 2173 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j )  =  ( sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) ) )
6362adantr 274 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ( N  +  1 )  +  k )  _C  k
)  =  sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j ) )  ->  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j )  =  ( sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) ) )
64 oveq1 5789 . . . . . . . 8  |-  ( ( ( ( N  + 
1 )  +  k )  _C  k )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
)  ->  ( (
( ( N  + 
1 )  +  k )  _C  k )  +  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) )  =  ( sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
)  +  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) ) )
6564adantl 275 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ( N  +  1 )  +  k )  _C  k
)  =  sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j ) )  -> 
( ( ( ( N  +  1 )  +  k )  _C  k )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) )  =  ( sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j )  +  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) ) )
66 ax-1cn 7737 . . . . . . . . . . . . 13  |-  1  e.  CC
67 pncan 7992 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  +  1 )  -  1 )  =  k )
6856, 66, 67sylancl 410 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( k  +  1 )  -  1 )  =  k )
6968oveq2d 5798 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  (
( k  +  1 )  -  1 ) )  =  ( ( ( N  +  1 )  +  k )  _C  k ) )
7069oveq2d 5798 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  + 
1 )  +  k )  _C  ( ( k  +  1 )  -  1 ) ) )  =  ( ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  +  1 )  +  k )  _C  k ) ) )
71 nn0addcl 9036 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN0 )
7233, 71sylan 281 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN0 )
73 nn0p1nn 9040 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
7473adantl 275 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  NN )
7574nnzd 9196 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  ZZ )
76 bcpasc 10544 . . . . . . . . . . 11  |-  ( ( ( ( N  + 
1 )  +  k )  e.  NN0  /\  ( k  +  1 )  e.  ZZ )  ->  ( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  +  1 )  +  k )  _C  (
( k  +  1 )  -  1 ) ) )  =  ( ( ( ( N  +  1 )  +  k )  +  1 )  _C  ( k  +  1 ) ) )
7772, 75, 76syl2anc 409 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  + 
1 )  +  k )  _C  ( ( k  +  1 )  -  1 ) ) )  =  ( ( ( ( N  + 
1 )  +  k )  +  1 )  _C  ( k  +  1 ) ) )
7870, 77eqtr3d 2175 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  + 
1 )  +  k )  _C  k ) )  =  ( ( ( ( N  + 
1 )  +  k )  +  1 )  _C  ( k  +  1 ) ) )
79 nn0p1nn 9040 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
80 nnnn0addcl 9031 . . . . . . . . . . . . . 14  |-  ( ( ( N  +  1 )  e.  NN  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN )
8179, 80sylan 281 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN )
8281nnnn0d 9054 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN0 )
83 bccl 10545 . . . . . . . . . . . 12  |-  ( ( ( ( N  + 
1 )  +  k )  e.  NN0  /\  ( k  +  1 )  e.  ZZ )  ->  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  e.  NN0 )
8482, 75, 83syl2anc 409 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  (
k  +  1 ) )  e.  NN0 )
8584nn0cnd 9056 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  (
k  +  1 ) )  e.  CC )
86 nn0z 9098 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  k  e.  ZZ )
8786adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  ZZ )
88 bccl 10545 . . . . . . . . . . . . 13  |-  ( ( ( ( N  + 
1 )  +  k )  e.  NN0  /\  k  e.  ZZ )  ->  ( ( ( N  +  1 )  +  k )  _C  k
)  e.  NN0 )
8971, 87, 88syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  k
)  e.  NN0 )
9033, 89sylan 281 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  k
)  e.  NN0 )
9190nn0cnd 9056 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  k
)  e.  CC )
9285, 91addcomd 7937 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  + 
1 )  +  k )  _C  k ) )  =  ( ( ( ( N  + 
1 )  +  k )  _C  k )  +  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) ) )
93 peano2cn 7921 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
9453, 93syl 14 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  CC )
9594adantr 274 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  e.  CC )
9695, 56, 57addassd 7812 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  +  1 )  =  ( ( N  +  1 )  +  ( k  +  1 ) ) )
9796oveq1d 5797 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  +  1 )  _C  (
k  +  1 ) )  =  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
9878, 92, 973eqtr3d 2181 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  k )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) )  =  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
9998adantr 274 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ( N  +  1 )  +  k )  _C  k
)  =  sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j ) )  -> 
( ( ( ( N  +  1 )  +  k )  _C  k )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) )  =  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
10063, 65, 993eqtr2rd 2180 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ( N  +  1 )  +  k )  _C  k
)  =  sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j ) )  -> 
( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  (
k  +  1 ) )  =  sum_ j  e.  ( 0 ... (
k  +  1 ) ) ( ( N  +  j )  _C  j ) )
101100ex 114 . . . . 5  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  k )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j )  ->  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  =  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j ) ) )
102101expcom 115 . . . 4  |-  ( k  e.  NN0  ->  ( N  e.  NN0  ->  ( ( ( ( N  + 
1 )  +  k )  _C  k )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
)  ->  ( (
( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  = 
sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j
) ) ) )
103102a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( N  e.  NN0  ->  ( ( ( N  + 
1 )  +  k )  _C  k )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
) )  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  =  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j
) ) ) )
1045, 10, 15, 20, 38, 103nn0ind 9189 . 2  |-  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( ( ( N  +  1 )  +  M )  _C  M )  = 
sum_ j  e.  ( 0 ... M ) ( ( N  +  j )  _C  j
) ) )
105104impcom 124 1  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ( N  +  1 )  +  M )  _C  M
)  =  sum_ j  e.  ( 0 ... M
) ( ( N  +  j )  _C  j ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   ` cfv 5131  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647    - cmin 7957   NNcn 8744   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821    _C cbc 10525   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  arisum  11299
  Copyright terms: Public domain W3C validator