ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcxmas Unicode version

Theorem bcxmas 11915
Description: Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
bcxmas  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ( N  +  1 )  +  M )  _C  M
)  =  sum_ j  e.  ( 0 ... M
) ( ( N  +  j )  _C  j ) )
Distinct variable groups:    j, M    j, N

Proof of Theorem bcxmas
Dummy variables  m  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bcxmaslem1 11914 . . . . 5  |-  ( m  =  0  ->  (
( ( N  + 
1 )  +  m
)  _C  m )  =  ( ( ( N  +  1 )  +  0 )  _C  0 ) )
2 oveq2 5975 . . . . . 6  |-  ( m  =  0  ->  (
0 ... m )  =  ( 0 ... 0
) )
32sumeq1d 11792 . . . . 5  |-  ( m  =  0  ->  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  =  sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j ) )
41, 3eqeq12d 2222 . . . 4  |-  ( m  =  0  ->  (
( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  <->  ( (
( N  +  1 )  +  0 )  _C  0 )  = 
sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j
) ) )
54imbi2d 230 . . 3  |-  ( m  =  0  ->  (
( N  e.  NN0  ->  ( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j ) )  <->  ( N  e.  NN0  ->  ( (
( N  +  1 )  +  0 )  _C  0 )  = 
sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j
) ) ) )
6 bcxmaslem1 11914 . . . . 5  |-  ( m  =  k  ->  (
( ( N  + 
1 )  +  m
)  _C  m )  =  ( ( ( N  +  1 )  +  k )  _C  k ) )
7 oveq2 5975 . . . . . 6  |-  ( m  =  k  ->  (
0 ... m )  =  ( 0 ... k
) )
87sumeq1d 11792 . . . . 5  |-  ( m  =  k  ->  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j ) )
96, 8eqeq12d 2222 . . . 4  |-  ( m  =  k  ->  (
( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  <->  ( (
( N  +  1 )  +  k )  _C  k )  = 
sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
) ) )
109imbi2d 230 . . 3  |-  ( m  =  k  ->  (
( N  e.  NN0  ->  ( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j ) )  <->  ( N  e.  NN0  ->  ( (
( N  +  1 )  +  k )  _C  k )  = 
sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
) ) ) )
11 bcxmaslem1 11914 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  (
( ( N  + 
1 )  +  m
)  _C  m )  =  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
12 oveq2 5975 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  (
0 ... m )  =  ( 0 ... (
k  +  1 ) ) )
1312sumeq1d 11792 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  =  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j ) )
1411, 13eqeq12d 2222 . . . 4  |-  ( m  =  ( k  +  1 )  ->  (
( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  <->  ( (
( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  = 
sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j
) ) )
1514imbi2d 230 . . 3  |-  ( m  =  ( k  +  1 )  ->  (
( N  e.  NN0  ->  ( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j ) )  <->  ( N  e.  NN0  ->  ( (
( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  = 
sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j
) ) ) )
16 bcxmaslem1 11914 . . . . 5  |-  ( m  =  M  ->  (
( ( N  + 
1 )  +  m
)  _C  m )  =  ( ( ( N  +  1 )  +  M )  _C  M ) )
17 oveq2 5975 . . . . . 6  |-  ( m  =  M  ->  (
0 ... m )  =  ( 0 ... M
) )
1817sumeq1d 11792 . . . . 5  |-  ( m  =  M  ->  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  =  sum_ j  e.  ( 0 ... M ) ( ( N  +  j )  _C  j ) )
1916, 18eqeq12d 2222 . . . 4  |-  ( m  =  M  ->  (
( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j )  <->  ( (
( N  +  1 )  +  M )  _C  M )  = 
sum_ j  e.  ( 0 ... M ) ( ( N  +  j )  _C  j
) ) )
2019imbi2d 230 . . 3  |-  ( m  =  M  ->  (
( N  e.  NN0  ->  ( ( ( N  +  1 )  +  m )  _C  m
)  =  sum_ j  e.  ( 0 ... m
) ( ( N  +  j )  _C  j ) )  <->  ( N  e.  NN0  ->  ( (
( N  +  1 )  +  M )  _C  M )  = 
sum_ j  e.  ( 0 ... M ) ( ( N  +  j )  _C  j
) ) ) )
21 0nn0 9345 . . . . 5  |-  0  e.  NN0
22 nn0addcl 9365 . . . . . 6  |-  ( ( N  e.  NN0  /\  0  e.  NN0 )  -> 
( N  +  0 )  e.  NN0 )
23 bcn0 10937 . . . . . 6  |-  ( ( N  +  0 )  e.  NN0  ->  ( ( N  +  0 )  _C  0 )  =  1 )
2422, 23syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  0  e.  NN0 )  -> 
( ( N  + 
0 )  _C  0
)  =  1 )
2521, 24mpan2 425 . . . 4  |-  ( N  e.  NN0  ->  ( ( N  +  0 )  _C  0 )  =  1 )
26 0z 9418 . . . . 5  |-  0  e.  ZZ
27 1nn0 9346 . . . . . . 7  |-  1  e.  NN0
2825, 27eqeltrdi 2298 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  +  0 )  _C  0 )  e. 
NN0 )
2928nn0cnd 9385 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  +  0 )  _C  0 )  e.  CC )
30 bcxmaslem1 11914 . . . . . 6  |-  ( j  =  0  ->  (
( N  +  j )  _C  j )  =  ( ( N  +  0 )  _C  0 ) )
3130fsum1 11838 . . . . 5  |-  ( ( 0  e.  ZZ  /\  ( ( N  + 
0 )  _C  0
)  e.  CC )  ->  sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j
)  =  ( ( N  +  0 )  _C  0 ) )
3226, 29, 31sylancr 414 . . . 4  |-  ( N  e.  NN0  ->  sum_ j  e.  ( 0 ... 0
) ( ( N  +  j )  _C  j )  =  ( ( N  +  0 )  _C  0 ) )
33 peano2nn0 9370 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
34 nn0addcl 9365 . . . . . 6  |-  ( ( ( N  +  1 )  e.  NN0  /\  0  e.  NN0 )  -> 
( ( N  + 
1 )  +  0 )  e.  NN0 )
3533, 21, 34sylancl 413 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  +  0 )  e. 
NN0 )
36 bcn0 10937 . . . . 5  |-  ( ( ( N  +  1 )  +  0 )  e.  NN0  ->  ( ( ( N  +  1 )  +  0 )  _C  0 )  =  1 )
3735, 36syl 14 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  +  0 )  _C  0 )  =  1 )
3825, 32, 373eqtr4rd 2251 . . 3  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  +  0 )  _C  0 )  = 
sum_ j  e.  ( 0 ... 0 ) ( ( N  +  j )  _C  j
) )
39 simpr 110 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  NN0 )
40 elnn0uz 9721 . . . . . . . . . . 11  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
4139, 40sylib 122 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  ( ZZ>= ` 
0 ) )
42 simpl 109 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  N  e.  NN0 )
43 elfznn0 10271 . . . . . . . . . . . . 13  |-  ( j  e.  ( 0 ... ( k  +  1 ) )  ->  j  e.  NN0 )
44 nn0addcl 9365 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  j  e.  NN0 )  -> 
( N  +  j )  e.  NN0 )
4542, 43, 44syl2an 289 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  j  e.  (
0 ... ( k  +  1 ) ) )  ->  ( N  +  j )  e.  NN0 )
46 elfzelz 10182 . . . . . . . . . . . . 13  |-  ( j  e.  ( 0 ... ( k  +  1 ) )  ->  j  e.  ZZ )
4746adantl 277 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  j  e.  (
0 ... ( k  +  1 ) ) )  ->  j  e.  ZZ )
48 bccl 10949 . . . . . . . . . . . 12  |-  ( ( ( N  +  j )  e.  NN0  /\  j  e.  ZZ )  ->  ( ( N  +  j )  _C  j
)  e.  NN0 )
4945, 47, 48syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  j  e.  (
0 ... ( k  +  1 ) ) )  ->  ( ( N  +  j )  _C  j )  e.  NN0 )
5049nn0cnd 9385 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  j  e.  (
0 ... ( k  +  1 ) ) )  ->  ( ( N  +  j )  _C  j )  e.  CC )
51 bcxmaslem1 11914 . . . . . . . . . 10  |-  ( j  =  ( k  +  1 )  ->  (
( N  +  j )  _C  j )  =  ( ( N  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
5241, 50, 51fsump1 11846 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j )  =  ( sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j )  +  ( ( N  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) ) )
53 nn0cn 9340 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  N  e.  CC )
5453adantr 276 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  N  e.  CC )
55 nn0cn 9340 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  CC )
5655adantl 277 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  CC )
57 1cnd 8123 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
1  e.  CC )
58 add32r 8267 . . . . . . . . . . . 12  |-  ( ( N  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  ( N  +  ( k  +  1 ) )  =  ( ( N  +  1 )  +  k ) )
5954, 56, 57, 58syl3anc 1250 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  ( k  +  1 ) )  =  ( ( N  +  1 )  +  k ) )
6059oveq1d 5982 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  +  ( k  +  1 ) )  _C  (
k  +  1 ) )  =  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) )
6160oveq2d 5983 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
)  +  ( ( N  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )  =  ( sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) ) )
6252, 61eqtrd 2240 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j )  =  ( sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) ) )
6362adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ( N  +  1 )  +  k )  _C  k
)  =  sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j ) )  ->  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j )  =  ( sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) ) )
64 oveq1 5974 . . . . . . . 8  |-  ( ( ( ( N  + 
1 )  +  k )  _C  k )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
)  ->  ( (
( ( N  + 
1 )  +  k )  _C  k )  +  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) )  =  ( sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
)  +  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) ) )
6564adantl 277 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ( N  +  1 )  +  k )  _C  k
)  =  sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j ) )  -> 
( ( ( ( N  +  1 )  +  k )  _C  k )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) )  =  ( sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j )  +  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) ) )
66 ax-1cn 8053 . . . . . . . . . . . . 13  |-  1  e.  CC
67 pncan 8313 . . . . . . . . . . . . 13  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( ( k  +  1 )  -  1 )  =  k )
6856, 66, 67sylancl 413 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( k  +  1 )  -  1 )  =  k )
6968oveq2d 5983 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  (
( k  +  1 )  -  1 ) )  =  ( ( ( N  +  1 )  +  k )  _C  k ) )
7069oveq2d 5983 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  + 
1 )  +  k )  _C  ( ( k  +  1 )  -  1 ) ) )  =  ( ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  +  1 )  +  k )  _C  k ) ) )
71 nn0addcl 9365 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN0 )
7233, 71sylan 283 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN0 )
73 nn0p1nn 9369 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
7473adantl 277 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  NN )
7574nnzd 9529 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( k  +  1 )  e.  ZZ )
76 bcpasc 10948 . . . . . . . . . . 11  |-  ( ( ( ( N  + 
1 )  +  k )  e.  NN0  /\  ( k  +  1 )  e.  ZZ )  ->  ( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  +  1 )  +  k )  _C  (
( k  +  1 )  -  1 ) ) )  =  ( ( ( ( N  +  1 )  +  k )  +  1 )  _C  ( k  +  1 ) ) )
7772, 75, 76syl2anc 411 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  + 
1 )  +  k )  _C  ( ( k  +  1 )  -  1 ) ) )  =  ( ( ( ( N  + 
1 )  +  k )  +  1 )  _C  ( k  +  1 ) ) )
7870, 77eqtr3d 2242 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  + 
1 )  +  k )  _C  k ) )  =  ( ( ( ( N  + 
1 )  +  k )  +  1 )  _C  ( k  +  1 ) ) )
79 nn0p1nn 9369 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
80 nnnn0addcl 9360 . . . . . . . . . . . . . 14  |-  ( ( ( N  +  1 )  e.  NN  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN )
8179, 80sylan 283 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN )
8281nnnn0d 9383 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( N  + 
1 )  +  k )  e.  NN0 )
83 bccl 10949 . . . . . . . . . . . 12  |-  ( ( ( ( N  + 
1 )  +  k )  e.  NN0  /\  ( k  +  1 )  e.  ZZ )  ->  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  e.  NN0 )
8482, 75, 83syl2anc 411 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  (
k  +  1 ) )  e.  NN0 )
8584nn0cnd 9385 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  (
k  +  1 ) )  e.  CC )
86 nn0z 9427 . . . . . . . . . . . . . 14  |-  ( k  e.  NN0  ->  k  e.  ZZ )
8786adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  NN0 )  -> 
k  e.  ZZ )
88 bccl 10949 . . . . . . . . . . . . 13  |-  ( ( ( ( N  + 
1 )  +  k )  e.  NN0  /\  k  e.  ZZ )  ->  ( ( ( N  +  1 )  +  k )  _C  k
)  e.  NN0 )
8971, 87, 88syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  k
)  e.  NN0 )
9033, 89sylan 283 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  k
)  e.  NN0 )
9190nn0cnd 9385 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  _C  k
)  e.  CC )
9285, 91addcomd 8258 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) )  +  ( ( ( N  + 
1 )  +  k )  _C  k ) )  =  ( ( ( ( N  + 
1 )  +  k )  _C  k )  +  ( ( ( N  +  1 )  +  k )  _C  ( k  +  1 ) ) ) )
93 peano2cn 8242 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
9453, 93syl 14 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  CC )
9594adantr 276 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( N  +  1 )  e.  CC )
9695, 56, 57addassd 8130 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( N  +  1 )  +  k )  +  1 )  =  ( ( N  +  1 )  +  ( k  +  1 ) ) )
9796oveq1d 5982 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  +  1 )  _C  (
k  +  1 ) )  =  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
9878, 92, 973eqtr3d 2248 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  k )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) )  =  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
9998adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ( N  +  1 )  +  k )  _C  k
)  =  sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j ) )  -> 
( ( ( ( N  +  1 )  +  k )  _C  k )  +  ( ( ( N  + 
1 )  +  k )  _C  ( k  +  1 ) ) )  =  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) ) )
10063, 65, 993eqtr2rd 2247 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  k  e.  NN0 )  /\  ( ( ( N  +  1 )  +  k )  _C  k
)  =  sum_ j  e.  ( 0 ... k
) ( ( N  +  j )  _C  j ) )  -> 
( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  (
k  +  1 ) )  =  sum_ j  e.  ( 0 ... (
k  +  1 ) ) ( ( N  +  j )  _C  j ) )
101100ex 115 . . . . 5  |-  ( ( N  e.  NN0  /\  k  e.  NN0 )  -> 
( ( ( ( N  +  1 )  +  k )  _C  k )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j )  ->  ( ( ( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  =  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j ) ) )
102101expcom 116 . . . 4  |-  ( k  e.  NN0  ->  ( N  e.  NN0  ->  ( ( ( ( N  + 
1 )  +  k )  _C  k )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
)  ->  ( (
( N  +  1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  = 
sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j
) ) ) )
103102a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( N  e.  NN0  ->  ( ( ( N  + 
1 )  +  k )  _C  k )  =  sum_ j  e.  ( 0 ... k ) ( ( N  +  j )  _C  j
) )  ->  ( N  e.  NN0  ->  (
( ( N  + 
1 )  +  ( k  +  1 ) )  _C  ( k  +  1 ) )  =  sum_ j  e.  ( 0 ... ( k  +  1 ) ) ( ( N  +  j )  _C  j
) ) ) )
1045, 10, 15, 20, 38, 103nn0ind 9522 . 2  |-  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( ( ( N  +  1 )  +  M )  _C  M )  = 
sum_ j  e.  ( 0 ... M ) ( ( N  +  j )  _C  j
) ) )
105104impcom 125 1  |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  -> 
( ( ( N  +  1 )  +  M )  _C  M
)  =  sum_ j  e.  ( 0 ... M
) ( ( N  +  j )  _C  j ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   CCcc 7958   0cc0 7960   1c1 7961    + caddc 7963    - cmin 8278   NNcn 9071   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165    _C cbc 10929   sum_csu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-fac 10908  df-bc 10930  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by:  arisum  11924
  Copyright terms: Public domain W3C validator