ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom1dif Unicode version

Theorem binom1dif 11998
Description: A summation for the difference between  ( ( A  +  1 ) ^ N ) and  ( A ^ N ). (Contributed by Scott Fenton, 9-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
binom1dif  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( A  +  1 ) ^ N )  -  ( A ^ N ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) ) )
Distinct variable groups:    A, k    k, N

Proof of Theorem binom1dif
StepHypRef Expression
1 0zd 9458 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
0  e.  ZZ )
2 simpr 110 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  NN0 )
32nn0zd 9567 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  ZZ )
4 peano2zm 9484 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
53, 4syl 14 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( N  -  1 )  e.  ZZ )
61, 5fzfigd 10653 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... ( N  -  1 ) )  e.  Fin )
7 fzssp1 10263 . . . . . 6  |-  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... (
( N  -  1 )  +  1 ) )
8 nn0cn 9379 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  CC )
98adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  CC )
10 ax-1cn 8092 . . . . . . . 8  |-  1  e.  CC
11 npcan 8355 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
129, 10, 11sylancl 413 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  - 
1 )  +  1 )  =  N )
1312oveq2d 6017 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... (
( N  -  1 )  +  1 ) )  =  ( 0 ... N ) )
147, 13sseqtrid 3274 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... ( N  -  1 ) )  C_  ( 0 ... N ) )
1514sselda 3224 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... ( N  - 
1 ) ) )  ->  k  e.  ( 0 ... N ) )
16 bccl2 10990 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  ( N  _C  k )  e.  NN )
1716adantl 277 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( N  _C  k )  e.  NN )
1817nncnd 9124 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( N  _C  k )  e.  CC )
19 simpl 109 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  A  e.  CC )
20 elfznn0 10310 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
21 expcl 10779 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
2219, 20, 21syl2an 289 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( A ^
k )  e.  CC )
2318, 22mulcld 8167 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  _C  k )  x.  ( A ^ k
) )  e.  CC )
2415, 23syldan 282 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( N  _C  k )  x.  ( A ^ k
) )  e.  CC )
256, 24fsumcl 11911 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( A ^ k ) )  e.  CC )
26 expcl 10779 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  CC )
27 addcom 8283 . . . . 5  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  1 )  =  ( 1  +  A ) )
2819, 10, 27sylancl 413 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A  +  1 )  =  ( 1  +  A ) )
2928oveq1d 6016 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( A  + 
1 ) ^ N
)  =  ( ( 1  +  A ) ^ N ) )
30 binom1p 11996 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( 1  +  A ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( A ^ k
) ) )
31 nn0uz 9757 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
322, 31eleqtrdi 2322 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  ( ZZ>= ` 
0 ) )
33 oveq2 6009 . . . . . 6  |-  ( k  =  N  ->  ( N  _C  k )  =  ( N  _C  N
) )
34 oveq2 6009 . . . . . 6  |-  ( k  =  N  ->  ( A ^ k )  =  ( A ^ N
) )
3533, 34oveq12d 6019 . . . . 5  |-  ( k  =  N  ->  (
( N  _C  k
)  x.  ( A ^ k ) )  =  ( ( N  _C  N )  x.  ( A ^ N
) ) )
3632, 23, 35fsumm1 11927 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( A ^ k ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k
) )  +  ( ( N  _C  N
)  x.  ( A ^ N ) ) ) )
37 bcnn 10979 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
3837adantl 277 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( N  _C  N
)  =  1 )
3938oveq1d 6016 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  _C  N )  x.  ( A ^ N ) )  =  ( 1  x.  ( A ^ N
) ) )
4026mulid2d 8165 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 1  x.  ( A ^ N ) )  =  ( A ^ N ) )
4139, 40eqtrd 2262 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  _C  N )  x.  ( A ^ N ) )  =  ( A ^ N ) )
4241oveq2d 6017 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) )  +  ( ( N  _C  N )  x.  ( A ^ N
) ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) )  +  ( A ^ N ) ) )
4336, 42eqtrd 2262 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( A ^ k ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k
) )  +  ( A ^ N ) ) )
4429, 30, 433eqtrd 2266 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( A  + 
1 ) ^ N
)  =  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( A ^ k ) )  +  ( A ^ N ) ) )
4525, 26, 44mvrraddd 8512 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( A  +  1 ) ^ N )  -  ( A ^ N ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004    - cmin 8317   NNcn 9110   NN0cn0 9369   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204   ^cexp 10760    _C cbc 10969   sum_csu 11864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-bc 10970  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator