ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom1dif Unicode version

Theorem binom1dif 11288
Description: A summation for the difference between  ( ( A  +  1 ) ^ N ) and  ( A ^ N ). (Contributed by Scott Fenton, 9-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
binom1dif  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( A  +  1 ) ^ N )  -  ( A ^ N ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) ) )
Distinct variable groups:    A, k    k, N

Proof of Theorem binom1dif
StepHypRef Expression
1 0zd 9090 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
0  e.  ZZ )
2 simpr 109 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  NN0 )
32nn0zd 9195 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  ZZ )
4 peano2zm 9116 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
53, 4syl 14 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( N  -  1 )  e.  ZZ )
61, 5fzfigd 10235 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... ( N  -  1 ) )  e.  Fin )
7 fzssp1 9878 . . . . . 6  |-  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... (
( N  -  1 )  +  1 ) )
8 nn0cn 9011 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  CC )
98adantl 275 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  CC )
10 ax-1cn 7737 . . . . . . . 8  |-  1  e.  CC
11 npcan 7995 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
129, 10, 11sylancl 410 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  - 
1 )  +  1 )  =  N )
1312oveq2d 5798 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... (
( N  -  1 )  +  1 ) )  =  ( 0 ... N ) )
147, 13sseqtrid 3152 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... ( N  -  1 ) )  C_  ( 0 ... N ) )
1514sselda 3102 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... ( N  - 
1 ) ) )  ->  k  e.  ( 0 ... N ) )
16 bccl2 10546 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  ( N  _C  k )  e.  NN )
1716adantl 275 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( N  _C  k )  e.  NN )
1817nncnd 8758 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( N  _C  k )  e.  CC )
19 simpl 108 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  A  e.  CC )
20 elfznn0 9925 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
21 expcl 10342 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
2219, 20, 21syl2an 287 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( A ^
k )  e.  CC )
2318, 22mulcld 7810 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  _C  k )  x.  ( A ^ k
) )  e.  CC )
2415, 23syldan 280 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( N  _C  k )  x.  ( A ^ k
) )  e.  CC )
256, 24fsumcl 11201 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( A ^ k ) )  e.  CC )
26 expcl 10342 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  CC )
27 addcom 7923 . . . . 5  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  1 )  =  ( 1  +  A ) )
2819, 10, 27sylancl 410 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A  +  1 )  =  ( 1  +  A ) )
2928oveq1d 5797 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( A  + 
1 ) ^ N
)  =  ( ( 1  +  A ) ^ N ) )
30 binom1p 11286 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( 1  +  A ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( A ^ k
) ) )
31 nn0uz 9384 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
322, 31eleqtrdi 2233 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  ( ZZ>= ` 
0 ) )
33 oveq2 5790 . . . . . 6  |-  ( k  =  N  ->  ( N  _C  k )  =  ( N  _C  N
) )
34 oveq2 5790 . . . . . 6  |-  ( k  =  N  ->  ( A ^ k )  =  ( A ^ N
) )
3533, 34oveq12d 5800 . . . . 5  |-  ( k  =  N  ->  (
( N  _C  k
)  x.  ( A ^ k ) )  =  ( ( N  _C  N )  x.  ( A ^ N
) ) )
3632, 23, 35fsumm1 11217 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( A ^ k ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k
) )  +  ( ( N  _C  N
)  x.  ( A ^ N ) ) ) )
37 bcnn 10535 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
3837adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( N  _C  N
)  =  1 )
3938oveq1d 5797 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  _C  N )  x.  ( A ^ N ) )  =  ( 1  x.  ( A ^ N
) ) )
4026mulid2d 7808 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 1  x.  ( A ^ N ) )  =  ( A ^ N ) )
4139, 40eqtrd 2173 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  _C  N )  x.  ( A ^ N ) )  =  ( A ^ N ) )
4241oveq2d 5798 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) )  +  ( ( N  _C  N )  x.  ( A ^ N
) ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) )  +  ( A ^ N ) ) )
4336, 42eqtrd 2173 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( A ^ k ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k
) )  +  ( A ^ N ) ) )
4429, 30, 433eqtrd 2177 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( A  + 
1 ) ^ N
)  =  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( A ^ k ) )  +  ( A ^ N ) ) )
4525, 26, 44mvrraddd 8152 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( A  +  1 ) ^ N )  -  ( A ^ N ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   ` cfv 5131  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    - cmin 7957   NNcn 8744   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821   ^cexp 10323    _C cbc 10525   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator