ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom1dif Unicode version

Theorem binom1dif 11428
Description: A summation for the difference between  ( ( A  +  1 ) ^ N ) and  ( A ^ N ). (Contributed by Scott Fenton, 9-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
binom1dif  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( A  +  1 ) ^ N )  -  ( A ^ N ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) ) )
Distinct variable groups:    A, k    k, N

Proof of Theorem binom1dif
StepHypRef Expression
1 0zd 9203 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
0  e.  ZZ )
2 simpr 109 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  NN0 )
32nn0zd 9311 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  ZZ )
4 peano2zm 9229 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
53, 4syl 14 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( N  -  1 )  e.  ZZ )
61, 5fzfigd 10366 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... ( N  -  1 ) )  e.  Fin )
7 fzssp1 10002 . . . . . 6  |-  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... (
( N  -  1 )  +  1 ) )
8 nn0cn 9124 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  CC )
98adantl 275 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  CC )
10 ax-1cn 7846 . . . . . . . 8  |-  1  e.  CC
11 npcan 8107 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
129, 10, 11sylancl 410 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  - 
1 )  +  1 )  =  N )
1312oveq2d 5858 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... (
( N  -  1 )  +  1 ) )  =  ( 0 ... N ) )
147, 13sseqtrid 3192 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... ( N  -  1 ) )  C_  ( 0 ... N ) )
1514sselda 3142 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... ( N  - 
1 ) ) )  ->  k  e.  ( 0 ... N ) )
16 bccl2 10681 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  ( N  _C  k )  e.  NN )
1716adantl 275 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( N  _C  k )  e.  NN )
1817nncnd 8871 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( N  _C  k )  e.  CC )
19 simpl 108 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  A  e.  CC )
20 elfznn0 10049 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
21 expcl 10473 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
2219, 20, 21syl2an 287 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( A ^
k )  e.  CC )
2318, 22mulcld 7919 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  _C  k )  x.  ( A ^ k
) )  e.  CC )
2415, 23syldan 280 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( N  _C  k )  x.  ( A ^ k
) )  e.  CC )
256, 24fsumcl 11341 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( A ^ k ) )  e.  CC )
26 expcl 10473 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  CC )
27 addcom 8035 . . . . 5  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  1 )  =  ( 1  +  A ) )
2819, 10, 27sylancl 410 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A  +  1 )  =  ( 1  +  A ) )
2928oveq1d 5857 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( A  + 
1 ) ^ N
)  =  ( ( 1  +  A ) ^ N ) )
30 binom1p 11426 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( 1  +  A ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( A ^ k
) ) )
31 nn0uz 9500 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
322, 31eleqtrdi 2259 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  ( ZZ>= ` 
0 ) )
33 oveq2 5850 . . . . . 6  |-  ( k  =  N  ->  ( N  _C  k )  =  ( N  _C  N
) )
34 oveq2 5850 . . . . . 6  |-  ( k  =  N  ->  ( A ^ k )  =  ( A ^ N
) )
3533, 34oveq12d 5860 . . . . 5  |-  ( k  =  N  ->  (
( N  _C  k
)  x.  ( A ^ k ) )  =  ( ( N  _C  N )  x.  ( A ^ N
) ) )
3632, 23, 35fsumm1 11357 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( A ^ k ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k
) )  +  ( ( N  _C  N
)  x.  ( A ^ N ) ) ) )
37 bcnn 10670 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
3837adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( N  _C  N
)  =  1 )
3938oveq1d 5857 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  _C  N )  x.  ( A ^ N ) )  =  ( 1  x.  ( A ^ N
) ) )
4026mulid2d 7917 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 1  x.  ( A ^ N ) )  =  ( A ^ N ) )
4139, 40eqtrd 2198 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  _C  N )  x.  ( A ^ N ) )  =  ( A ^ N ) )
4241oveq2d 5858 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) )  +  ( ( N  _C  N )  x.  ( A ^ N
) ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) )  +  ( A ^ N ) ) )
4336, 42eqtrd 2198 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( A ^ k ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k
) )  +  ( A ^ N ) ) )
4429, 30, 433eqtrd 2202 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( A  + 
1 ) ^ N
)  =  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( A ^ k ) )  +  ( A ^ N ) ) )
4525, 26, 44mvrraddd 8264 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( A  +  1 ) ^ N )  -  ( A ^ N ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    - cmin 8069   NNcn 8857   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944   ^cexp 10454    _C cbc 10660   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator