ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom1dif Unicode version

Theorem binom1dif 11479
Description: A summation for the difference between  ( ( A  +  1 ) ^ N ) and  ( A ^ N ). (Contributed by Scott Fenton, 9-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
binom1dif  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( A  +  1 ) ^ N )  -  ( A ^ N ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) ) )
Distinct variable groups:    A, k    k, N

Proof of Theorem binom1dif
StepHypRef Expression
1 0zd 9254 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
0  e.  ZZ )
2 simpr 110 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  NN0 )
32nn0zd 9362 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  ZZ )
4 peano2zm 9280 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
53, 4syl 14 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( N  -  1 )  e.  ZZ )
61, 5fzfigd 10417 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... ( N  -  1 ) )  e.  Fin )
7 fzssp1 10053 . . . . . 6  |-  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... (
( N  -  1 )  +  1 ) )
8 nn0cn 9175 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e.  CC )
98adantl 277 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  CC )
10 ax-1cn 7895 . . . . . . . 8  |-  1  e.  CC
11 npcan 8156 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
129, 10, 11sylancl 413 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  - 
1 )  +  1 )  =  N )
1312oveq2d 5885 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... (
( N  -  1 )  +  1 ) )  =  ( 0 ... N ) )
147, 13sseqtrid 3205 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 0 ... ( N  -  1 ) )  C_  ( 0 ... N ) )
1514sselda 3155 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... ( N  - 
1 ) ) )  ->  k  e.  ( 0 ... N ) )
16 bccl2 10732 . . . . . . 7  |-  ( k  e.  ( 0 ... N )  ->  ( N  _C  k )  e.  NN )
1716adantl 277 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( N  _C  k )  e.  NN )
1817nncnd 8922 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( N  _C  k )  e.  CC )
19 simpl 109 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  A  e.  CC )
20 elfznn0 10100 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
21 expcl 10524 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
2219, 20, 21syl2an 289 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( A ^
k )  e.  CC )
2318, 22mulcld 7968 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... N ) )  ->  ( ( N  _C  k )  x.  ( A ^ k
) )  e.  CC )
2415, 23syldan 282 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  k  e.  (
0 ... ( N  - 
1 ) ) )  ->  ( ( N  _C  k )  x.  ( A ^ k
) )  e.  CC )
256, 24fsumcl 11392 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( A ^ k ) )  e.  CC )
26 expcl 10524 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  CC )
27 addcom 8084 . . . . 5  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  1 )  =  ( 1  +  A ) )
2819, 10, 27sylancl 413 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( A  +  1 )  =  ( 1  +  A ) )
2928oveq1d 5884 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( A  + 
1 ) ^ N
)  =  ( ( 1  +  A ) ^ N ) )
30 binom1p 11477 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( 1  +  A ) ^ N
)  =  sum_ k  e.  ( 0 ... N
) ( ( N  _C  k )  x.  ( A ^ k
) ) )
31 nn0uz 9551 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
322, 31eleqtrdi 2270 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  N  e.  ( ZZ>= ` 
0 ) )
33 oveq2 5877 . . . . . 6  |-  ( k  =  N  ->  ( N  _C  k )  =  ( N  _C  N
) )
34 oveq2 5877 . . . . . 6  |-  ( k  =  N  ->  ( A ^ k )  =  ( A ^ N
) )
3533, 34oveq12d 5887 . . . . 5  |-  ( k  =  N  ->  (
( N  _C  k
)  x.  ( A ^ k ) )  =  ( ( N  _C  N )  x.  ( A ^ N
) ) )
3632, 23, 35fsumm1 11408 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( A ^ k ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k
) )  +  ( ( N  _C  N
)  x.  ( A ^ N ) ) ) )
37 bcnn 10721 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
3837adantl 277 . . . . . . 7  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( N  _C  N
)  =  1 )
3938oveq1d 5884 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  _C  N )  x.  ( A ^ N ) )  =  ( 1  x.  ( A ^ N
) ) )
4026mulid2d 7966 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( 1  x.  ( A ^ N ) )  =  ( A ^ N ) )
4139, 40eqtrd 2210 . . . . 5  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( N  _C  N )  x.  ( A ^ N ) )  =  ( A ^ N ) )
4241oveq2d 5885 . . . 4  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) )  +  ( ( N  _C  N )  x.  ( A ^ N
) ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) )  +  ( A ^ N ) ) )
4336, 42eqtrd 2210 . . 3  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  sum_ k  e.  ( 0 ... N ) ( ( N  _C  k
)  x.  ( A ^ k ) )  =  ( sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k
) )  +  ( A ^ N ) ) )
4429, 30, 433eqtrd 2214 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( A  + 
1 ) ^ N
)  =  ( sum_ k  e.  ( 0 ... ( N  - 
1 ) ) ( ( N  _C  k
)  x.  ( A ^ k ) )  +  ( A ^ N ) ) )
4525, 26, 44mvrraddd 8313 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( ( ( A  +  1 ) ^ N )  -  ( A ^ N ) )  =  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( ( N  _C  k )  x.  ( A ^ k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   ` cfv 5212  (class class class)co 5869   CCcc 7800   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    - cmin 8118   NNcn 8908   NN0cn0 9165   ZZcz 9242   ZZ>=cuz 9517   ...cfz 9995   ^cexp 10505    _C cbc 10711   sum_csu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator