ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcxmaslem1 GIF version

Theorem bcxmaslem1 11397
Description: Lemma for bcxmas 11398. (Contributed by Paul Chapman, 18-May-2007.)
Assertion
Ref Expression
bcxmaslem1 (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵))

Proof of Theorem bcxmaslem1
StepHypRef Expression
1 oveq2 5835 . 2 (𝐴 = 𝐵 → (𝑁 + 𝐴) = (𝑁 + 𝐵))
2 id 19 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
31, 2oveq12d 5845 1 (𝐴 = 𝐵 → ((𝑁 + 𝐴)C𝐴) = ((𝑁 + 𝐵)C𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1335  (class class class)co 5827   + caddc 7738  Ccbc 10633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-v 2714  df-un 3106  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-iota 5138  df-fv 5181  df-ov 5830
This theorem is referenced by:  bcxmas  11398
  Copyright terms: Public domain W3C validator